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Introduction 
The control of large-scale solar thermal systems and heating grids - respectively hybrid energy systems - in 

which they are embedded, goes along with several control tasks, which are carried out in different control 

layers. At a higher level, supervisory controllers, often referred to as energy management systems, decide 

on the operating mode of the different plants and components, and provide the reference signals for their 

controllers. These modes of operation of the different plants and components are then carried out by the 

respective controllers at plant and component level, and by those responsible for the operation of the district 

heating network. The control of large-scale solar thermal systems thus can be divided into the following 3 

main categories: 

1. Supervisory control (energy management systems), which will be the focus of this FACT SHEET, IEA SHC FACT 

SHEET 55.A-D4.1. 

2. Control of heat distribution networks, which is one focus of IEA SHC FACT SHEET 55.A-D4.2. 

3. Control strategies for the integrated plants and components, i.e. the actual solar plant, but possibly also heat 

pumping systems or other plants and components. The control of large-scale solar plants is the focus of IEA 

SHC FACT SHEET 55.B-D3.1. 

There are basically 2 methodologically different approaches for supervisory control:  

In most of the applications supervisory control consists of an application-specific set of rules deciding on the 

general mode of operation and the set points for the lower-level controllers of the integrated plants and 

components. In the simplest variation the rules only consider the current state of the system; this represents 

the current state of the art for the supervisory control of large-scale solar thermal systems. More advanced 

strategies additionally consider forecasts for the future solar heat production or heat demand, but still rely 

on a set of comparatively simple and application-specific rules. 

A very systematic alternative approach for the supervisory control is the application of optimization-based 

predictive supervisory controllers, i.e. control strategies based on solving a mathematical optimization 
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problem and the consideration of knowledge on future boundary conditions. These approaches, often 

referred to as energy management systems, do not focus on specific applications, e.g. solar thermal systems, 

but aim to cover as many technologies, energy sectors, storages, etc., as possible in a modular and systematic 

way. The same framework could therefore be used for the supervisory control of almost any hybrid energy 

system. Even if the potential of these approaches has been proven within different demonstration projects, 

they are currently in a development phase and have not yet fully penetrated the market. 

Both rule-based and optimization-based approaches for the supervisory control of large-scale solar thermal 

systems are displayed in detail in the two main chapters of this fact sheet. In the chapter on the State of the 

art – Supervisory control by rules for the choice of the operating mode based on expert knowledge approaches 

only considering the current state of the system and approaches additionally considering forecasts are 

discussed. In the subsequent chapter on the Advanced concept – Optimization-based predictive supervisory 

control different approaches are presented in a very general manner, and the aspects specifically important 

for large-scale solar thermal systems are highlighted appropriately. 

Since both approaches significantly benefit from appropriate short-term forecasts for the solar yield to be 

expected for a certain operating temperature, the future heat demand, etc., different possibilities for on-line 

forecasting are discussed in Appendix A – On-line forecasting, and one specific, practically suitable approach 

is explained in more detail. 
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State of the art – Supervisory control by rules for the 

choice of the operating mode based on expert knowledge  
The state of the art is to derive the respective operating mode of the different plants and components from 

measured variables, and if available, other information, e.g. forecasts, by means of simple rules. This includes, 

for example, the adjustment of the set point for the feed temperature levels according to the weather 

conditions, typically based on the ambient temperature, or to decide on a specific operating strategy for the 

operation of on-site thermal storages. However, the operating strategies applied vary considerably among 

different applications and especially among different technology providers. Nevertheless, a distinction can 

be made between two basic approaches: 

1. Strategies only considering the current state of the system 

2. Strategies additionally using forecasts  

Examples for these 2 approaches are examined in more detail in the following based on a typical, widely 

spread configuration consisting of a decentral collector field, an on-site buffer storage, on-site consumers 

and a bi-directional connection to a DH network. A simplified scheme of this configuration is given in Figure 

1, however, the possibility to feed into the DH network is often realized directly, i.e. not via the buffer storage, 

what is displayed simplified in this scheme. 

 

Figure 1: Scheme of a typical large-scale solar thermal system with a decentral, bi-directional connection to a DH network 



Task 55 Towards the Integration of Large   

SHC Systems into DHC Networks 
A-D4.1  
Supervisory control of large-scale solar thermal systems 
 
  

 

4 

Strategies only considering the current state of the system 

The decision on the mode of operation finally comes down to 2 (possibly 3) main decisions, first whether the 

collector field should be operated or not, second whether heat should get fed into or obtained from the DH 

network, and possibly third at which position of the buffer storage the heat from the collector field should 

get fed in, in case the buffer storages have different inlets. Indirectly these decisions also determine the 

temperature levels the different plants and components are operated at, however, these levels are typically 

control parameters or externally imposed, e.g. by the consumer or the DH network. The heat consumption 

takes place anyway, so in simple, state-of-the-art configurations (without demand side management) no 

decision must be taken to this end.  

The decision on starting or stopping the operation of the collector field are taken based on the current levels 

of measured temperatures among the collector field and the state of the buffer storages. In both cases, 

deciding to start or stop implies a certain sequential control for gradually switching on/off the different 

actuators as certain temperature levels are achieved, finally ending in normal operation mode or no 

operation of the collector field. 

The decision on the interaction with the DH network, i.e. whether to feed into the DH network, to obtain 

heat from the DH network, or neither of these, is taken based on the current state of the buffer storage. This 

is typically done very simply, by starting to feed in respectively to draw when certain thresholds of the state 

of the buffer storage are reached. 

The decision on the inlet position to be used to feed into the buffer storage is also taken based on the current 

state of the buffer storage. This is typically simply done by switching between the inlets when certain 

thresholds of the state of the buffer storage and the current temperature level provided by the collector field 

are achieved. 

In all these decisions the evaluation of the current state of the buffer storage is very important. The current 

state is in most cases only determined by the current values of vertically distributed temperature sensors. 

The next step of complexity is to use the available temperature levels to estimate the temperature levels in 

between the measurement positions and to use the resulting temperature distribution to estimate the 

current amount of heat stored and possibly also the current exergy level. The best estimation of the current 

state of the buffer can be achieved by additionally simulating the vertical temperature distribution online 

using a suitable mathematical model, and to continuously correct the current simulated state by the currently 

available measurement values. However, such complex and sophisticated approaches are typically only used 

when also more complex control strategies are applied.  

The threshold levels used for the decisions described above typically vary with the seasons of the year, 

indirectly considering to some extent the conditions of the near future, and that the required temperatures 

for feeding into the DH network, typically fixed by contracts, are always given. Often a certain correlation to 

the ambient temperature is fixed, but it could also be the case that the set point is defined by the supervisory 

controller of the entire DH network. 
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Even if these control strategies are based on comparatively simple rules, it could be reasonable to optimize 

these strategies by determining the optimal values for the different threshold levels through numerical 

simulation studies and possibly even by numerical optimization algorithms. This is not state-of-the-art yet 

among the most solar thermal systems connected to DH networks, but is getting more common and 

particularly supported by application-oriented R&D projects.  

Strategies additionally using forecasts  

The strategies described in the previous section can be improved by additionally using forecasts to consider 

a likely near future. With this an operating mode can be selected that expands the expert rules from 

considering only the current state of the system to considering also the near future (defined by the forecast 

horizon, typically 24 or 48 h).  

To do so, forecasts of dominant influencing factors that are outside the influence of the supervisory controller 

must be available. For the configuration considered (see Figure 1) forecasts for the solar heat production and 

the heat demand of the on-site consumers are required. Multiple forecasting methods exist in literature; a 

review on the different methods and a more detailed description of a comparatively simple, general and 

widely applicable forecasting method is given in the Appendix. 

The decisions finally needed to be made by the supervisory controller remain the same as described in the 

previous section, however, the way how the forecasts are considered in detail again strongly vary among 

different applications and especially among the different technology providers.  

An exemplary, simple rule-based supervisory control strategy for configurations as described in Figure 1 is 

described in more detail in the following. 

Exemplary, simple rule-based supervisory control strategy considering forecasts 

The strategy is based on the following framework conditions: 

• The owner of the solar thermal system (collector, buffer storage, on-site hydraulic network) can buy/sell heat 

from/to the DH network operator and has to provide the demanded heat for the on-site consumers. 

• 2 possible modes for using the solar heat currently produced:  

o Buffer feed: Storing the heat in the local buffer storage to keep it available for the on-site consumers. 

o DH network feed: Feeding the solar energy currently produced into the district heating network. 

• In case the needs of local consumers cannot be met, heat must be purchased from the district heating network.  

• Explicit consideration of the different tariffs for  

o the heat fed into the DH network, 

o the heat sold to the on-site consumers, and 

o the heat purchased from the DH network. 
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To determine the mode of operation for the next period, the supervisory controller periodically executes 

the following steps, e.g. every 15 min or every hour: 

1. Evaluation of the current state of the buffer storage: In the first step, the state of the buffer storage is 

evaluated by using a mathematical model of the buffer storage. For this, the parameters of the model of the 

buffer storage are adapted by using the current values from the temperature sensors installed. For the model 

a partial differential equation describing the vertical temperature distribution is recommended, however, 

depending on the complexity of the buffer storage also more complex models could be necessary. For the 

numerical simulation the buffer storage is discretized over the height, e.g. in 100 layers. To evaluate the 

current state of the buffer storage, strictly speaking the energy useful for the consumers, the exergy of the 

buffer storage is evaluated, using a given reference temperature, defining the zero level as corresponding to 

the minimum temperature accepted by the on-site consumers, e.g. 50°C. 

2. Forecasting the future solar yield and the heat demand of the onsite-consumers: In parallel to the first step, 

the course of the future solar yield as well as the future heat demand of the on-site consumers are forecast. 

Since the feed temperature required from the solar collector field results from the chosen mode of operation, 

the forecasts for the solar yield must be calculated for the different possible set points for the feed 

temperature. In this simple case, these are the set points for the 2 different modes of operation, Buffer feed 

(e.g. 75°C) and DH network feed (e.g. 90°C), where the set point for Buffer feed is a control parameter and the 

set point for DH network feed is imposed by the DH network operator/control.  

3. Decision on the operating mode: In the last step, a decision-making algorithm is used to decided how to use 

the available heat. This is done by evaluating the following three cases:  

a. In case the heat in the storage is enough to provide the consumer with heat, the heat should be fed into 

the DHG ➔ DH network feed 

b. In case the heat in the storage together with the expected heat from the solar thermal plant is still not 

enough to supply the consumer, the heat should be used to load the storage ➔ Buffer feed 

c. In case the heat in the storage is not enough to fully supply the consumers, but together with the future 

solar heat for DH network feed produces a surplus, then a mixed mode of operation is necessary, and the 

temporal behavior must be closer evaluated. Therefore, the heat demand of the consumers, considered 

to be counted negative, is reduced by the heat from the storage. The remaining, negative heat demand 

must be provided by solar.  In a next step the heat demand is accumulated for every timestep (e.g. 15 

minutes) of the forecast horizon. In case this accumulated course shows a negative heat demand, solar 

heat must be fed into storage (Buffer feed) at the earliest time possible to supply this demand. Then the 

accumulated course of the demand is calculated one more time and it is evaluated again, if a negative 

heat demand is occurring and which is the earliest time possible to supply it by solar. By this the storage 

losses can be minimized, since the heat is fed into the storage as late as possible and only in case it is 
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needed. This routine stops in case the accumulated sum for the heat demand is zero or positive, means 

something stays in the storage and the remaining time steps which are not used for loading the storage 

(Buffer feed) can be used to generate additional profit by feeding the solar heat into the district heating 

grid (DH network feed).  

A schematic overview on the strategy is given in Figure 2. 

 

Figure 2: Scheme of an exemplary supervisory control strategy considering forecasts. 

Unfavorable operation due to large forecasting errors can be avoided or at least mitigated by repeatedly 

executing the algorithm, e.g. every 15 min or hourly. The considered current state of the system as well as 

the forecasts are thus regularly updated taking the newly available measurement data into account. 

A more detailed description of this exemplary algorithm can be found in [1], however, only in German. 

For sure it could be reasonable to optimize the strategy also in this case by determining the optimal control 

parameters, e.g. the set points for the feed temperature of the collector field for the different operating 

modes, or the prediction horizon, through numerical simulation studies and possibly even by numerical 

optimization algorithms. Big potential would lie in the continuous variation of the temperature levels the 

different components should be operated at. However, this would significantly increase the complexity, 

quickly leading to problems which only could be handled reasonably and robustly with systematic 

approaches. The most promising approaches for this are optimization-based concepts, which will be the focus 

of the next chapter. 
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Advanced concept –  

Optimization-based predictive supervisory control  
A very systematic alternative approach for the supervisory control is the application of optimization-based 

predictive supervisory controllers, i.e. control strategies based on solving a mathematical optimization 

problem and the consideration of knowledge on future boundary conditions. The available approaches for 

optimization-based predictive supervisory control are not limited to solar thermal systems, in fact they aim 

to cover as many technologies, energy sectors, storages, etc., as possible. The coupling of the different energy 

sectors will continue to increase, and it is obvious that a joined consideration of all producers and consumers, 

storages, distribution grids, and all coupled sectors theoretically must lead to the best overall operating 

behaviour. Because of the many possibilities of the detailed structure and configuration of the different 

hybrid energy systems to be considered, it is not reasonable to develop specific approaches for single sectors, 

but instead holistic approaches should be pursued. This is already the case for most of the approaches 

currently available. Even if the different approaches are often clearly derived from specific sectors, the 

general principles used have a common basis. For this reason, the approaches for optimization-based 

predictive supervisory control are presented in a very general manner in the following, and the aspects 

specifically important for large-scale solar thermal systems are highlighted appropriately. 

These optimization-based predictive supervisory controllers are generally referred to as energy management 

systems (EMS). Their main task is to control the entire energy production (among all plants and sectors) while 

fulfilling the demand of the different consumers and ensuring that all restrictions are fulfilled, e.g. the storage 

capacities of thermal buffer storages or electrical batteries and the transport capacities of pipes or power 

lines. 

The idea of optimization-based control is to formulate the control problem as an optimization problem, which 

then is periodically solved. Casting the control problem into an optimization problem requires the 

formulation of two main parts: First, the dynamics of the considered (hybrid) energy system must be 

described through the constraints of the optimization problem, and second a so-called cost-function of the 

optimization problem penalizing or rewarding a certain operating strategy must be formulated. This 

optimization problem is then solved, leading to an optimal control schedule for a given horizon, e.g. 24 or 48 

hours. However, only the first time instance of the control signals is applied to the system, strictly speaking 

as set points of the lower-level controllers of the integrated plants and components. After a certain period, 

e.g. 15 min or 1 hour, the formulation and solution of the optimisation problem is repeated using updated 

measurement values, i.e. the current state of the systems, and forecasts. This repeated update and solution 

of an optimization problem is typically referred to as moving horizon model predictive control (MPC) approach 

in control theory.  

A schematic overview of the structure of such an optimization-based predictive supervisory control (Energy 

Management System) is given in Figure 3. 
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Figure 3: Structure of an optimization-based predictive supervisory control (Energy Management System) 

The main difference in the different approaches available, respectively investigated in research, is in the 

mathematical models used: 

First, linear or non-linear models could be used, consequently leading to linear, respectively far more complex 

and computationally expensive non-linear, optimization problems. Since the control must be real-time 

capable, even though the step-sizes are comparatively large, a trade-off between model complexity and 

speed must be made. Non-linear approaches would allow for more complex, and thus more precise models, 

however, obtaining optimal solutions for the resulting non-linear optimization problems is very hard. For 

most non-linear optimization problems optimality of the result cannot be guaranteed. Therefore, linear 

models are more widely used in both industry and academia. 

Second, certain discrete decisions must be taken by the supervisory controller, e.g. the decision between two 

operating modes or simply the decision whether a certain controllable plant, e.g. a gas boiler, should be in 

operation or not. To do so additional Boolean or integer variables need to be added to the models, leading 

to mixed-integer linear programmes (MILP), which are currently the most common approach for 

optimization-based predictive supervisory control of hybrid energy systems in both industry and academia, 

see e.g. [2], [3], [4]. Many years of research and development on the application of MILP (not only) for the 

predictive supervisory control of hybrid energy systems have devised fast algorithms like branch-and-bound 

or branch-and-cut as well as efficient heuristics that are able to derive proven optimal solutions for such 

MILPs under tight time constraints, see e.g. [5], [6], [7]. To allow for a wide and efficient application the 

derivation of the mathematical models and the optimization problem needs to be largely automated, see 

e.g. [2], in order to decrease the effort necessary for the development and implementation of such a control 

at a certain system. 
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However, the reduced complexity and thus accuracy of the models also goes along with disadvantages. The 

decision variables correlating to the different production units are typically the demanded power / heat flow 

or the mass flows corresponding to a certain temperature spread. In the first step, constant efficiencies over 

the entire operating range are assumed. Especially in the thermal sector these two assumptions, fixed 

temperature levels and constant efficiencies imply significant disadvantages. First, efficiencies of certain 

producers often depend on the load they are operated at. However, this could be modelled sufficiently well 

within the MILP framework by using piece-wise-affine (PWA) functions, see e.g. [2]. The use of fixed 

temperature levels implies a much bigger problem, since efficiencies of certain producers, losses, and in 

particular the yield of solar thermal plants strongly depend on the temperature levels they are operated at. 

For sure, the most accurate approach to model all these phenomena would be to go for non-linear models 

and consequently to mixed-integer non-linear programming (MINLP). However, the authors do not consider 

this to be a practically suitable, widely and systematically applicable approach, since the complexity and 

computationally effort increases dramatically, and what is still more problematic, the optimality of the result 

cannot be guaranteed. A reasonable approach to overcome this problem while remaining within the MILP 

framework is presented in [8], describing the idea of heat flows with a set of mass flows at different, constant 

temperatures. A promising approach could also be to benefit from the extension of commercial solvers to 

non-convex mixed-integer quadratically-constrained programming (MIQCP) problems, e.g. [6], allowing for 

direct modelling of heat flows at variable temperatures and therefore allowing the EMS to compute optimal 

control schedules not only in terms of energy flows, but also at which specific temperatures. However, these 

investigations are at a very early stage of research at the moment this fact sheet was created.  

The optimal prediction horizons and time intervals the optimization problem should be resolved strongly 

depend on the detailed configuration, in particular on the storage capacities. In most cases longer horizons 

lead to better results, but also more complex and difficult to solve optimization problems. Especially for very 

large storages, i.e. seasonal storages, this has to be considered. In this case a cascadic combination of a 

mathematically less complex, long-term optimization solved at longer intervals, and a more detailed and 

more frequently solved short-term optimization may be a sufficient approach. 
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Appendix A – On-line forecasting  
For the case the large-scale solar thermal systems with a bidirectional connection to DH networks go along 

with on-site consumers and an on-site buffer storage, not only forecasting the solar heat production, but also 

forecasting the heat demand of the consumers should be considered. However, most of the forecasting 

methods are rather general and thus in principle applicable to any domain. 

To be suitable for a wide and systematic practical application the forecasting methods preferably should 

fulfill the following three requirements: 

1. Simple implementation: The methods should not require high computational effort or depend on third party 

software to be easily implementable on commercially available controllers, without license costs. 

2. Automatic adaption: The methods should automatically adapt to variations over the year (e.g. seasonal 

changes, newly erected buildings) minimizing the (re-)parametrization effort. 

3. Wide applicability: The methods should be capable of describing a large variety of different solar collector 

installations (hot water/process heat, size, orientations and climate conditions) and a large variety of 

consumers (single house/heating grid, size, office/industry/household). 

The literature on forecasting methods is dominated by methods designed for the electrical sector, with many 

publications dating back to 1966. In contrast to this, forecasting methods of the solar heat production and 

the heat demand are smaller and younger research fields. However, due to the preliminary work for the 

electrical sector a rich variety of forecasting methods is already available. The methods available in literature 

are based on regression models, e.g. [9], [10], [11], stochastic models (usually based on ARMA models), e.g. 

[9], [10], or combinations of both, e.g. [12], [13]. Additionally, machine learning methods (usually based on 

neural networks) have been applied too, e.g. e.g. [14], [15]. The stochastic models as well as the machine 

learning approaches are typically rather complex, what is not necessary for this task, and hinders their 

practical utilization. Thus, regression-based approaches are in principle more suitable for practical 

implementation.  

A suitable approach, fulfilling the three mentioned requirements of being simple to implement, automatically 

adapting itself and widely applicable very well, for forecasting the heat demand is presented in [16]. A 

generalization of the method and its extension to forecasting the solar heat production is presented in by 

[17] respectively [18].These two methods share a general approach, which can be applied to other sectors 

or technologies as well. 

In the following, first the general approach is described and then specified for forecasting the solar heat 

production and the heat demand. 

  



Task 55 Towards the Integration of Large   

SHC Systems into DHC Networks 
A-D4.1  
Supervisory control of large-scale solar thermal systems 
 
  

 

12 

General approach 

The approach bases on the description of the influence of external factors 𝑥 on the solar heat production 

respectively the heat demand. Such external factors are for example the global radiation or the ambient 

temperature. If a forecast for these external factors  𝑥 is available, e.g. from weather service providers, a 

prediction for the correlating produced respectively consumed heat flow �̂̇� can be computed. The simplest 

model for the correlation of the external factors and the heat flow is linear, which can be written as 

�̂̇�(𝑡) = 𝛽0 + 𝛽1𝑥1(𝑡) + 𝛽2𝑥2(𝑡) + 𝛽3𝑥3(𝑡) + ⋯ ,  
 

(1) 

with the regression parameters 𝛽. Forecasts for  𝑥 from weather service providers are typically available with 

a sampling time of one hour. Thus, the prediction is also calculated every hour of the day 

�̂̇�[𝑛] = 𝛽0 + 𝛽1�̂�1[𝑛] + 𝛽2𝑥2[𝑛] + 𝛽3𝑥3[𝑛] + ⋯ , 
 

(2) 

with the discrete time variable 𝑛. 

In addition to the influence of external factors, the solar heat production and the heat demand show a 

periodicity, which cannot be entirely related to external factors 𝑥. In the case of the solar heat production, 

for example local shading can occur at a certain time of the day, which is independent of the global radiation. 

Likewise, at the heat demand, the user might consume heat for showering at a certain hour of the day, which 

is independent of the weather. This periodicity is considered by using not only one linear regression model, 

but a linear regression model for each hour of the day 𝑚 = 1,2, … , 24. These 24 linear regression models 

only differ at their regression parameters 𝛽[𝑚], which leads to the final prediction model: 

�̂̇�[𝑛] = 𝛽0[𝑚] + 𝛽1[𝑚]𝑥1[𝑛] + 𝛽2[𝑚]𝑥2[𝑛] + 𝛽3[𝑚]𝑥3[𝑛] + ⋯ (3) 

The 24 regression parameters 𝛽[𝑚] are determined from historical data. For this, �̇� and 𝑥 of the respective 

hour of the previous 𝑁𝑑 days is stored. This leads to an overdetermined system of 𝑁𝑑 linear equations, and 

the parameters are calculated in order to minimize the sum of squared errors (least squares approach) by 

using the computationally cheap pseudo-inverse. Continuous redetermination of these regression 

parameters ensures that the forecasting method automatically adapts to variations over the year. 

This procedure is always recommended, if the variable that should be forecast depends on external factors 

and shows a periodicity that cannot be described by forecasted external factors. 

An additional correction of the prediction  �̂̇� should help to increase the accuracy of the forecast of the near 

future by making use of the latest prediction error (�̇� − �̂̇�). To keep the method simple, a scaled linearly 

decaying function Φ is used, adding the weighted latest available prediction error to the following time steps, 

correcting the prediction. The correction can therefore be written as 
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�̃̇�[𝑛] = �̂̇�[𝑛] + (�̇�0 − �̂̇�0)  Φ . (4) 

While the correction makes sense in general, it can also be the source of problems and thus needs evaluation 

for each application, where special focus must be given to variations of the sign of the prediction error. 

The specific prediction models (3) for forecasting the solar heat production and the heat demand are 

presented in the following two sections respectively. The correction (4) does not change and is therefore not 

further discussed. 

Forecasting the solar heat production of large-scale solar thermal plants 

The specific application of the method for large-scale solar thermal plants should be discussed for flat plate 

collectors, accounting for about 70% of all solar thermal systems installed in Europe [19]. The solar heat 

production from a flat plate collector during steady-state operating conditions can be approximately 

expressed by the static energy equation according to the European Standard ISO 9806; see e.g. [20]: 

�̇�(𝑡) = 𝐴coll𝐾(𝜃)𝜂0𝐼g(𝑡) − 𝐴coll𝑐1Δ𝑇(𝑡) − 𝐴coll𝑐2Δ𝑇(𝑡)2 (5) 

with the temperature difference 

Δ𝑇(𝑡) =  �̅�fl(𝑡) − 𝑇amb(𝑡) (6) 

where 𝐴coll denotes the gross collector area, 𝐼g the global radiation received by the collector surface, �̅�fl the 

arithmetic mean fluid temperature between the inlet and the outlet of the collector and 𝑇ambthe ambient 

temperature. The coefficients represent the optical efficiency 𝜂0, the heat loss coefficients 𝑐1 and 𝑐2. The 

function 𝐾(𝜃) represents the incident angle modifier (IAM) which describes the dependency of the optical 

efficiency 𝜂0  on the angle of incidence 𝜃  of the global solar radiation 𝐼g , which varies from collector to 

collector and is typically estimated through experiments [21] and given in the data sheet.  

However, even though the Standard EN12975:2006 is accepted and widely used, the analysis of 

measurement data from solar thermal plants shows that applying this data sheet method, with its 

parameters taken from the data sheet of the collector, does not always lead to satisfying results for 

forecasting the solar heat production. The main reasons for this lie in the thermal inertia, shading and 

pollution. To overcome these problems, the parameter sets (𝜂0, 𝑐1, 𝑐2, 𝐴coll) must be different over the day 

and be continuously re-determined throughout the operation. 

The static collector model (5) is identical in structure to the prediction model (3) with the regression 

parameters 𝛽0 = 0, 𝛽1 = 𝐴coll𝐾(𝜃)𝜂0, 𝛽2 = −𝐴coll𝑐1 and 𝛽3 = −𝐴coll𝑐2 and the external factors 𝑥1 = 𝐼g, 

𝑥2 = Δ�̂� and 𝑥3 = Δ�̂�2, where 𝐼g and 𝑇amb are obtained from a weather service provider and the forecasted 

temperature difference is computed according to (4) by Δ�̂� =  �̂̅�fl − �̂�amb  assuming the mean fluid 

temperature to be constant �̂̅�fl(𝑡) =  �̂̅�fl = const. , what is reasonable since the solar thermal plants are 

operated with constant set points for the outlet temperatures in the considered time frames and also the 

return temperatures can be assumed constant for the considered time frames. 
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Exemplarily two different forecasts for the solar heat production of a large-scale solar thermal plant are 

displayed in Figure 4. It can be concluded, that the usage of the parameters from the collector field would 

lead to systematic errors (grey), sunny days could be forecasted very well (left), and days with rapid cloud 

movements could be forecasted well in average but with stronger temporal deviations (right). 

  
Figure 4: Exemplary forecasts for the solar heat production of a large-scale solar thermal plant 

Explanations:  left: sunny day; right: day with rapid cloud movements. 

black: heat actually produced; colour: hourly re-determined forecasts (starting with green, going via 

yellow to red and blue); grey: forecast achieved with parameters from data sheet. 

net collector area of 138 m²; location: Graz, Austria; 

Forecasting the heat demand 

Even though the heat demand of consumers is influenced by many different external factors, considering the 

ambient temperature as only external factor in forecasting is enough to get suitable results for all non-

industrial consumers, if the parameters are periodically, e.g. hourly, re-determined, and separate regression 

models are used for each hour of the day. Thus, the prediction model analogous to (3) for forecasting the 

heat demand can be set to 

�̂̇�[𝑛] = 𝛽0[𝑚] + 𝛽1[𝑚]�̂�amb[𝑛] . 
 

(7) 

 

A distinction between workdays and weekend days in most cases additionally improves the forecasting 

quality significantly. Hence, separate hourly regression parameters should get considered for workdays and 

weekend days. 

Exemplarily two different forecasts for the heat demand of an office building are shown in Figure 5. It can be 

concluded, that the heat demand can be forecasted sufficiently well for days with relevant heat demand, as 

for example for the day in spring displayed on the left-hand side. However, the head demand in summer 

(right-hand side) is much more. However, in this case the overall demand is extremely small, around 3% of 

the connection load, thus it is for sure sufficient to approximately forecast the average demand of the next 

day. 



Task 55 Towards the Integration of Large   

SHC Systems into DHC Networks 
A-D4.1  
Supervisory control of large-scale solar thermal systems 
 
  

 

15 

  
Figure 5: Exemplary forecast of the heat demand 

Explanations:  left: spring; right: summer. 

black: heat actually consumed; colour: hourly re-determined forecasts (starting with green, 

going via yellow to red and blue). 

office building (connection load: 300 kW), location: Austria. 
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