
Task 55 Towards the Integration of Large  

SHC Systems into DHC Networks 

B-D3. Automated monitoring, failure detection of key 
components, control strategies and self-learning controls 
of key components  
 
  

 

1 

IEA SHC FACT SHEET 55.B-D3.2 

Subject: Automated Monitoring Solar Thermal 

Description: 

Recommendations for an automatic monitoring process of solar thermal 
systems are given - starting from sensors to data acquisition, data storage, 
computation of benchmarks and fault detection. 

Date: 23.09.2020 

Authors: Lukas Feierl, Peter Luidolt 

Download possible at: http://task55.iea-shc.org/fact-sheets  
 

Introduction 
To ensure the optimal performance of solar thermal systems good monitoring strategies are needed. With 

their help, faults can be detected in time which can save enormous amounts of money. As the size of new 

solar thermal systems and their complexity increases steadily in the past years and more and more sensor-

data is available, the detection of errors can only be done efficiently by automated monitoring and analysis. 

Thus, recommendations for the automated monitoring process (see fig.1) are given in this work. 

The monitoring process consists of sequential steps discussed in separate chapters in detail:  

Chapter  

Sensor Technology deals with the aspect of which sensors should be used for monitoring and how 

uncertainties can be minimized. Both is critical as the measurement data is the basis for further analysis. 

Additionally, it is described which measurements are recommended for evaluating solar heating systems. 

Chapter Data Acquisition gives helpful tips concerning how the data can be collected and handled at the 

system site. In order to use the data for automated fault detection algorithms, the data must next be pre-

processed and standardized. Common techniques for pre-processing and recommendations for the storage 

of the processed data are given in chapters Data Processing and Data Storage. Finally, the last two chapters 

Key Performance Indicators and Fault-Detection deal with the aspects of automatically computing key 

performance indicators, error algorithms and notification management. 

 

Figure 1: Overview of the monitoring process and corresponding chapters. 
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Sensor Technology  
Later chapters deal with how faults can be detected, and which indicators can be used to access the status 

of solar thermal systems. However, if the monitoring data consists of faulty or incorrect measurements, no 

meaningful results can be obtained neither automatically nor manually. Thus, in a first step, the availability 

of the data, the accuracy of the sensors, but also the credibility of the measurement devices must be good 

enough for properly analysing systems. Hence, this section deals with recommended sensors for different 

physical quantities and how the devices should be positioned. Additionally, the second part of this section 

describes which measurements are needed for evaluating solar heating systems. 

Recommended Sensor Types 

Temperature Sensors 

Because of the thermal nature of solar heating systems, temperature sensors are essential to system 

control and monitoring. Often industrial platinum sensors are used by inserting them into pipes with 

thermowells. Because of their temperature-dependent electric resistance, the platinum can be used to 

deduce the temperature of the fluid in the pipes. The tolerances of the sensors can be determined based 

on the DIN EN 60751 certification (see Table 1 below). 

Table 1: Tolerances for DIN EN 60751 certified temperature sensors. 

DIN-certification Tolerance (in Kelvin) 

DIN AA 1 ΔT = 0.10 + 0.0017 ⋅ |T| 

DIN A ΔT = 0.15 + 0.0020 ⋅ |T| 

DIN B ΔT = 0.30 + 0.0050 ⋅ |T| 

 

However, there are multiple factors affecting the accuracy of the measurement if neglected (Fischer, 2008; 

Knabl, et al., 2012): 

• To ensure proper heat transfer between sensor and measured fluid, the sensor must be placed inside the pipes 

using a thermowell, with good contact between fluid, thermowell and sensor. Thermic paste should be used 

to ensure good thermal contact (Knabl, et al., 2012). Any air between sensor and thermowell can lead to high 

systematic errors and thus must be avoided (See Figure 4). 

 

1 Note that previously to DIN EN 60751:2009-05 this certification class was also called 1/3 DIN B or just 1/3 DIN.  
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• The pipes and the sensor should be properly heat-insulated (Knabl, et al., 2012). The temperature of both 

should be as similar as possible to the fluid inside the pipes. 

• The thermowell must be placed such that the fluid engulfs the sensor properly. Optimally, the sensor is in the 

centre of the fluid and parallel to the volume flow direction (see Figure 2). This increases the heat transfer from 

fluid to sensor and prevents turbulences that might disturb other measurements – i.e. volume flow 

measurements that requires straight unperturbed inline streams.   

• During operation of the system, the fluid in the outer parts of the pipes has slower flow speed and lower 

temperatures compared to the fluid in the centre. Hence, the insertion depth of the sensor must be sufficient 

to measure the temperature correctly. A rule of thumb for calculating the insertion depth 𝑙𝑑  can be found in 

(Fischer, 2008): 

𝑙𝑑 ≃ 15 ⋅ 𝑑𝑠 + 1.5 ⋅ 𝑙𝑠 

with 𝑑𝑠 denoting the diameter of the sensor tip and 𝑙𝑠 denoting the length of the sensor. Similarly, (Knabl, et 

al., 2012) demand: 

𝑙𝑑 ≥ 1.5 ⋅ 𝑙𝑠  

𝑙𝑑 > 8 ⋅ 𝑑𝑟  

with 𝑑𝑟 denoting the diameter of the thermowell. 

• Ideally, only the temperature-dependent resistance of the platinum sensor is measured in order to calculate 

the temperature of the fluid. However, if a two-wired configuration is used the two cables supplying the sensor 

with electricity as well as the terminal points add to the signal. This introduces an offset in the measurement 

and thus lead to a wrong temperature measurement. This can be prevented by using a four-wired or three-

wired configuration (see further below):  

In the case of a two-wired configuration, the offset can be measured after installation and then be subtracted 

(Fischer, 2008). Nevertheless, even after such a calibration, different ambient temperatures can still lead to 

changes in the resistance of the wires which introduces a systematic error for the measurement. As (Fischer, 

2008) showed this effect introduces an error of about ±0.18 K (in addition to other errors) considering a 500m 

long cable with a 1mm² diameter and a temperature difference of 20 Kelvin. Plus, the cables need to be 

properly isolated from humidity to prevent errors due to resistance decreases (Fischer, 2008). Also, the 

mechanical stress to the cable should be minimized in order to prevent changes in the resistance (Knabl, et al., 

2012). 

If instead a four-wired configuration is used, two wires are used to provide the sensor with a known current 𝐼+ 

while the other two are solely used for the voltage-measurement (see Figure 3). Because of the high resistance 
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of the voltage measurement, the current 𝐼𝑚  in the measurement cables is very low in comparison to 𝐼+. As a 

result, the measured voltage 𝑈𝑚 almost entirely corresponds to the resistance of the sensor: 

𝑈𝑚 = 𝐼𝑚 ⋅ (𝑅1 + 𝑅2) + (𝐼+ − 𝐼𝑚) ⋅ 𝑅𝑠𝑒𝑛𝑠𝑜𝑟 ≃ 𝐼+ ⋅ 𝑅𝑠𝑒𝑛𝑠𝑜𝑟  

Thus, there are almost no errors due to the resistance of the cables used for the measurement 𝑅1 and 𝑅2. As a 

result 𝑅𝑠𝑒𝑛𝑠𝑜𝑟  can be calculated accurately based on the knowledge of 𝐼+  and the measurement 𝑈𝑚 . 

To reduce the costs of 4-wired temperature measurements one can use smaller cable diameters, as their 

resistance is not influencing the signal anymore. Even in a four-wired configuration the sensor can be calibrated 

after installation as the resistance of the terminal points may introduce an offset to the signal. This is especially 

important if sensors are used for determining temperature differences. However, in this case paired sensors 

are available that are already calibrated carefully by the manufacturer. 

In conclusion, when installed and calibrated correctly a DIN AA platinum sensor is recommended for 

temperature measurements (Knabl, et al., 2012; Fischer, 2008). With this, the required accuracy for 

monitoring purposes with about ±1K (Fischer, 2008) is achieved.  

 

 Diameter sensor: 6mm 

Diameter thermowell: 8mm 

Figure 4: Air between sensor and thermowell due to 
incompatible diameters (Fischer, 2008). 

Figure 2: Different positions of thermowell in pipe. Option 
a is preferred over option b and Option c. (Fischer, 2008) 

Figure 3: Sketch of four-wire measurement 
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Pressure Sensors 

Care must be taken that the sensors are installed in accordance to the manufacturer requirements and that 

the sensor supports water-glycol mixtures. Usually, pressure sensors for solar thermal systems need to 

operate in a range of 0 to 10 bar, which must be supported by the sensor. Also, the temperature stress on 

the pressure sensor should be minimized (Knabl, et al., 2012). This can be done for example by using 

syphon tubes with the pressure sensor on the end of the tube. With enough volume between the hot fluid 

and the sensor this reduces the heat transfer such that the sensor is exposed to low temperatures only. The 

accuracy of commonly used sensors is in the range of few tenths of a millibar, which is sufficient for fault-

detection at typical solar systems (Fischer, 2008).  

Heat-Meters and Volume Flow Sensors 

Heat meters consist of a volume flow sensor in addition to two temperature sensors and an arithmetic unit 

responsible for calculating the energy yield. They must be installed based on the requirements of the 

manufacturer. This includes that the inlet and outlet pipes are straight and sufficiently long. Additionally, in 

the case of inductive flow meters the accuracy of the flow meter depends on the velocity of the fluid with 

high errors for very low velocities. To reach minimum thresholds for the fluid velocity, one can decrease the 

diameter of the pipes with concentric reducer and use a corresponding flow sensor. The resulting hydraulic 

resistance is neglectable while ensuring way better accuracy for the sensor.   

The temperature sensors are chosen by the manufacturer and are often paired such that aging effects and 

offsets do not influence the measurement of the temperature difference. Care must be taken, that the heat 

meter supports the temperature range of the application. For example, different heat meters must be used 

for cooling and heating applications. 

The components should meet at least the requirements of EN 1434-1 (Fischer, 2008) and the installation of 

the heat meter must follow the requirements of EN 1434-6 (Knabl, et al., 2012; Physikalisch Technische 

Bundesanstalt, 2014), including the following: 

• If not specified by the manufacturer the inlet zone is recommended to be at least 10 times the diameter of the 

pipes and the outlet zone at least 8 times the diameter of the pipe.  

• The pressure sensor must be free of tensile-, pressure- or torsional stress. 

• If required by the measurement technology the fluid temperatures must be mixed sufficiently. 

• The fluid and pipes need to be free from air and dirt. Pipes in front and below the sensor must be secured 

sufficiently. 

• The wires of the temperature measurements must be continuous and are not allowed to be cut or extended. 
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Table 2: Tolerances for heat meter measurements for EN 1434-1. 

Volume flow sensor 
(volume flow measurement) 

± (2 + 0.02
𝑞𝑝

𝑞
) % 

Arithmetic unit 
(heat capacity calculation)  

± (0.5 +
Δ𝑇𝑚𝑖𝑛

Δ𝑇
) % 

Temperature sensor 
(temperature measurement) 

± (0.5 +
Δ𝑇𝑚𝑖𝑛

Δ𝑇
) % 

 

With 𝑞𝑝 denoting the nominal flow rate [m³/h], 𝑞 denoting the measured flow rate [m³/h], Δ𝑇𝑚𝑖𝑛 denoting 

the minimum required temperature difference between flow and return [K] and Δ𝑇 denoting the measured 

temperature difference between flow and return [K]. 

Radiation Sensors 

Based on (Knabl, et al., 2012) the radiation sensor should be certified by ISO 9060 with class ‘first class’ and 

be able to measure irradiation values in the range of 0 to 1500 W/m². Care must be taken that the sensor is 

clean in order to measure correct irradiation values (see Fehler! Verweisquelle konnte nicht gefunden 

werden.). 

Conclusion 

In conclusion the sensor types depicted in Table 3 are recommended for measuring physical quantities at 

the solar thermal systems. Additionally, one can analyse the effect of different sensor types on measured 

and calculated quantities following strategies similar to (Zirkel-Hofer, et al., 2016) by applying uncertainty 

propagation methods. With these considerations, sensors can be chosen in order to get the desired 

accuracy and precision of different quantities.    

Table 3: Recommended certificates and tolerances for monitoring for different sensor types. 

Sensor Type Recommended Certificate Required Tolerance 

Temperature DIN AA ±1.0 K 

Pressure  ±0.1 bar 

Volume Flow EN 1434-1 ± 5% 

Energy EN 1434-1 ± 5% 

Radiation ISO 9060 ±5% 
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Recommended Measurements 

This section describes which physical quantities should be measured, giving an explanation why the 

measurement quantity is important in the monitoring process.  

Based on (Fischer, 2008; Knabl, et al., 2012; Dröscher, et al., 2009) there are various possible layouts for 

solar heating systems making it difficult to describe recommendations for each layout at the same time. 

There are multiple ways to account for this, for example by using representative layouts or by building up 

modules. This topic will be discussed in section Data Storage, describing the effect of datapoint mapping on 

the monitoring process. However, for this section a modular concept is used separating the system in 

various parts that can be recombined to form a large variety of systems. The considered sections include 

the solar collector circuit, the heat storage, external heating, solar cooling and domestic heat and district 

heating in accordance to (Ohnewein, et al., 2016). This allows to give recommendations for useful 

measurements in a simple and compact way that reduces redundancies. 

The following list of recommended measurements follows the results of (Knabl, et al., 2012; Fischer, 2008; 

Faure, et al., 2020) closely. In addition to the recommended measurements, short descriptions of their 

advantages have been added by the author. A more compact representation of the list including the 

sources can be found in Appendix A. 

Solar collector Circuit 

The solar collector circuit is the core component of each solar heating system, including the primary and 

secondary solar collector circuit with the collector units, solar pumps and piping. One of the most 

important information for evaluating the solar collector circuit is how much energy was produced by the 

system. This information is sometimes even needed for billing but can also be used to analyse the collectors 

and the overall system efficiency. Hence, either a heat meter should be installed at the solar collector 

circuit or at least a volume flow sensor and temperature sensors should be installed such that the energy 

yield can be calculated.  

Usually, radiation sensors are installed to measure global radiation. This information can be used for system 

control but is also vital to calculate the specific solar yield, the collector efficiency, or compare measured 

and expected solar yield. Care must be taken that the sensor is sufficiently aligned with the collector plane, 

or that at least the tilt and orientation is known (see Figure 6). If this is not the case, however, the radiation 

on the collector surface can be approximated by methods described in (Duffie & Beckman, 2013). Plus, the 

sensor must be clean in order to measure the right amount of irradiation. Results from the research and 

development project MeQuSo show that the error caused by dirt can be as high as 10% (see Fehler! 

Verweisquelle konnte nicht gefunden werden.). Optimally, multiple sensors are used, and beam and 

diffuse radiation are measured as well. This allows to calculate the irradiation on different angles more 

accurately and can be used to check whether the irradiation is measured correctly. This is especially 

important if large scale solar heating systems are monitored to detect measurement errors early. 
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For comparing measured and expected solar yield (see the section on Key Performance Indicators), the 

ambient temperature is needed to calculate the heat losses.  To compute accurate values, an ambient 

temperature sensor should be placed close to the collectors. Note that the sensor must be placed in the 

shadow as the air temperature is needed for the calculation.  

Generally, the ambient temperature can be used for calculating the expected heat losses of multiple 

components of the system, allowing to compare the expected with the measured heat losses. However, as 

some components may be placed in different environments, multiple temperature sensors are needed for 

each respective environment.  

Additionally, pressure sensors in the solar collector circuit are vital for detecting leakages or high pressure 

that may lead to serious damage. If multiple sensors are installed, the change of pressure may also indicate 

where the problem occurred. If sensors are placed in front and after the pump, the performance of the 

pump can be checked via the pressure difference.     

Temperature sensors should be placed in each collector row after the last collector. This allows to monitor 

the hydraulic balancing of the collectors or if air or dirt impede the volume flow.  

Furthermore, a temperature sensor at the collector joint can be used to compare to the measurement of 

the heat meter or different collector rows. If a heat exchanger is used, temperature sensors in the primary 

and secondary circuit can be used to calculate the efficiency of the heat exchanger. Furthermore, the 

signals of pumps like the on/off-signal, errors and the speed of rotation should be recorded as well, 

allowing to optimize parameters for overall performance. 

 

Figure 5: Picture of a radiation sensor before(left) and after cleaning (right). As part of the MeQuSo-project a deviation of 

roughly 10% of the currently measured value was identified due to the dirt on the sensor. 
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Figure 6: Radiation sensor not aligned with solar collectors as indicated by the yellow and red line. 

Heat Storage 

A heat storage or buffer tank can be used to store the solar yield for a certain amount of time such that 

energy can be delivered also when there is no radiation available. For controlling charging and discharging 

of the heat storage, multiple temperature sensors can be inserted into the tank. For monitoring purposes, 

at least three sensors should be placed inside the tank, measuring the temperature at the top, the bottom 

and the middle of the heat storage. However, in large-scale applications at least 5 to 10 temperature 

sensors are typically used. With this information, the quality of the stratification can be estimated. In 

addition, when combined with the ambient temperature and some meta-information about the tank, heat 

losses as well as the energy stored in the tank can be computed (see the section on Key Performance 

Indicators).   

The flow and return temperatures of the input and output of the heat storage should be measured to 

analyse heat losses from piping, and better evaluate in- and outtake. When the charging and discharging 

behaviour of the storage needs to be analysed too, signals from mixing valves must be recorded as well. 

Otherwise the temperatures of different storage layers cannot be computed correctly and no statements 

about the quality of the storage stratification can be made. 

Additionally, like at the solar collector circuit, either a heat meter or a volume flow sensor accompanied by 

temperature sensors should be used to measure the heat outtake from the storage tank. Similarly, signals 

from pumps should be recorded as well. 

External Heating 

In case an external heating source is used, a heat meter or volume flow sensor together with temperature 

sensors should be installed to measure how much energy was produced by the external source. Pump 

signals and set temperatures can be used to further analyse and optimize the system control. As with the 

solar collector circuit, the pressure should be measured in order to detect leakages and other faults. 

Alternatively, the fuel or electricity consumption of the external heating may be used to calculate the heat 

introduced by the system, for example by measuring the electric consumption of electric boilers or the gas 

consumption of gas boilers.  This requires an efficiency model of the external heat source. 
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Absorption Cooling 

The absorption cooling section typically consists of an absorption chiller, a cooling tower and a consumer 

circuit where the chilled water is requested. In order to evaluate the performance of the chiller, the 

temperatures of feed and return as well as the respective volume flow need to be measured for each of the 

three circuits. For the chilled water side, a heat meter is typically installed to measure the cooling energy 

provided to the consumer. With the temperature and flow measurements of each circuit estimated values 

for the energy yield can be calculated by using a simulation model of the chiller. Plus, key performance 

indicators like the thermal coefficient of performance (COP) as well as the energy efficiency ratio (EER) can 

be computed (see the section on Key Performance Indicators). In order to calculate the electrical COP and 

EER, an electricity meter must be installed as well. For the cooling tower, fan speed and especially the 

water intake are important properties to analyse the efficiency of the re-cooling circuit or detect 

accumulation of mud in the tower. Again, signals for pumps, fans and valves should be recorded in order to 

analyse the system properly, and pressure should be measured to detect leakages. 

Consumer (Domestic Hot Water, District Heating) 

Similar to the other circuits, the temperature of the flow and return of the circuit should be measured, 

together with the pressure and control signals. As the consumer typically is the system boundary of the 

solar heating system, it is recommended to install heat meters which can be used for energy flow analysis.  

Data Acquisition 
Before data can be used for monitoring purposes, it has to be acquired from the sensors and transformed 

to digital data. Usually a data logger is installed at the system site to collect the data and provide a short-

term data storage. Plus, this allows on-site devices to display the data, which is crucial for services or if 

network errors occur. Hence, this section deals with the requirements of data acquisition and how data 

should be stored and exported.  

Data Logging 

As (Knabl, et al., 2012) describes, the system responsible for logging the data must be as fail-safe as 

possible in order to guarantee the measurement of the data at any time. In order to minimize 

communication problems, it is recommended to apply the logger directly at the PLC. Even if network errors 

occurred, the data should be available at least for 3 months. In conclusion, a data logger is recommended 

to be used which writes data in at least daily files on a non-volatile memory, which is as independent of 

other network components as possible. With this setup, even if there are network issues, the data can be 

visualised on-site and can be accessed during services. 
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Logging Interval 

The frequency of storing the data greatly influences the subsequent processing of the data. If the logging 

rate is too low, the data may not be usable as high uncertainties in the results are introduced and the 

dynamics of the system cannot be studied anymore. For example, if the daily solar yield is to be compared 

to the solar irradiation during the day, the integral of the irradiation must be calculated. With a one-hour 

sampling rate, high errors in the radiation energy would occur as the radiation varies a lot during a one-

hour time interval. On the other hand, if a high sampling rate is used for logging the data, more 

measurements need to be stored. This drastically increases the computational resources needed for storing 

and processing the data. Based on (Knabl, et al., 2012) the data should be logged at least once per 5 

minutes. Based on (Fischer, 2008) an interval of 1 minute is recommended. For control parameters, logging 

“on-change” is recommended. 

Naming Standards 

Based on the results of (Fischer, 2008; Ohnewein, et al., 2016) a naming schema can be used to standardise 

the names of sensors at different plants. This greatly improves the re-usability of algorithms and improves 

the readability. While there is no agreed standard on naming yet, usually the scheme includes English 

shortcuts for the type of measurement (te – temperature, pr – pressure, …), for the circuit (solar, heat 

storage, …) and for the part that is measured (col – collector, pmp – pump). The focus is to create small, 

easily readable and clearly defined names for each type of measurement at each system that can be used 

by the database and algorithms.  

Data export 

Finally, it often makes sense to only temporarily save the data at the system site for access during services, 

but to export the data to a centralized server where data from multiple systems are stored and processed. 

This is important as on the PLC on-site only calculations with small numbers of data points and small 

timeframes are feasible. On a PC or server much more sophisticated operations on larger portions of the 

data are possible. A benefit of a central system approach is that changes in algorithms can be applied once 

instead of at each solar system individually. In addition, the space requirements on the computer at the 

system site can be relaxed. To decrease the risks for the system in case of a network error, nevertheless 

either a certain amount of fault detection must be done on a PLC or at system-site level, or a redundant 

setup must be used. 

To enable an automatic monitoring process which saves time and reduces costs, the data export must 

happen automatically (Knabl, et al., 2012). The needed frequency of the data transmission depends on how 

fast faults should be detected. For very high frequencies the overhead for sending the data is higher 

compared to sending the data in batches. It is recommended to export the data at least daily. The transfer 
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itself can be done as seen fit as long as the channels for transmitting the data are encrypted. For example, 

SSH or FTPS protocols can be used to ensure the security of the data. 

Data Processing 
Optimally, the data acquired during logging is standardised and works perfectly for all further calculations. 

In practice, however, often pre-processing steps are needed to use the data. This is especially the case 

when multiple systems are considered or if the data comes from different sources and must be re-

combined. Another example is historical data where other standards might have applied. 

In many of these cases the quality control and pre-processing of the data is done manually. However, there 

is a lot of time involved in doing so, while also requiring the personnel to have a high knowledge of the 

system. Hence, the automatization of pre-processing the data has big potential for saving time and 

reducing costs. 

Extracting regular expressions 

In some cases, there are expressions or unit annotations in the raw data that must be extracted in order to 

convert the data to numeric values. For example, annotations like “kWh” or “°C” may be present in the 

data. These expressions may be filtered out by using regular expressions (Fischer, 2008; Ohnewein, et al., 

2016). 

Conversion of units 

When multiple systems are analysed that are installed in various parts of the world, data is often logged in 

different units, like for example SI units or the metric system. It is recommended to (automatically) convert 

all units to standardised ones, such that the data can be used for cross-system computations (Ohnewein, et 

al., 2016).  

Time Format 

The international standard for the representation of dates and time is defined in ISO 8601. Hence, UTC 

format should be used for storing the data. If instead other datetime formats are used for logging, it is 

recommended to convert to UTC during pre-processing. However, using UTC offsets like for example UTC+1 

increases the interpretability and comparability of the data, as certain measurements like the radiation 

follow local time. 

Sometimes time shifts are present in the data if the data logging uses time formats with daylight saving 

time. In this case there exists a one-hour gap in the data at one day when summertime starts, and a one- 

hour overlap of the data when summertime ends. Unfortunately, at the overlap the data is often 

overwritten by the logger without any means to extract the data (Fischer, 2008). Nevertheless, the 
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conversion in UTC should be performed introducing a one-hour gap in order to correctly compute solar 

angles for example. 

Plausibility Checks 

At this early stage in the monitoring process, most error algorithms cannot be applied to the data before 

completing the pre-processing step. In contrast, simple plausibility checks that only consider single data 

points can easily be applied in the processing (Ohnewein, et al., 2016). 

Min-Max Thresholds 

One simple algorithm is to introduce minimum and maximum values for each data point and check if no 

measurement exceeds these values (Ohnewein, et al., 2016). For example, the radiation is unlikely to 

exceed 1500 W/m², ambient temperature is unlikely to fall below -30°C (for most cases). Such detections 

can indicate uncalibrated or faulty sensors. As another example thresholds can also be used to detect 

leakages when applied to pressure measurements (Knabl, et al., 2012). Note that different minima and 

maxima are needed to check that the sensor measures physically plausible values and to check that the 

measured quantities are plausible for the specific part of the system. For example, negative pressure 

measurements indicate faulty sensors. However, a measurement of 0.5 bar at the solar collector circuit is 

physically plausible but too low for a running functional system. In both cases setting appropriate threshold 

can be used to trigger warnings in an early step of data processing. 

Constant values 

Another problem is that faulty recording of sensor data at the PLC sometimes might introduce constant 

values in the data, while the measured values are discarded for a period of time. It is easy to identify such 

occurrences as most measurements at solar thermal systems vary slightly even over short periods of time. 

When values are exactly constant for 5 minutes, it can be assumed that the data was recorded incorrectly.  

It is important to apply the plausibility checks before the resampling step (see below), as errors in the data 

would e.g. corrupt the interpolation.   

Down-Sampling 

As part of the pre-processing one might resample the data to a common time grid. This is a requirement for 

being able to perform basic calculations like addition or subtraction of multiple data points. Plus, a uniform 

time grid may simplify some calculations (like the integration of values) or even be a requirement for 

certain algorithms (i.e. a recurrent neural network assuming equidistant timestamps). As a rule of thumb, a 

time grid of 1 minute for high accuracy or 5 minutes for faster accessibility is good enough for most 

calculations. For down-sampling the data, multiple algorithms might be considered: 

Nearest 

The first alternative is to use the nearest measured value for each timestamp in the grid. This is a fast and 
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simple algorithm, because only one value must be considered per timestamp. As a disadvantage, a lot of 

data is lost when the original data has a very high resampling rate, loosing the corresponding information. 

In contrast, when the frequency is low but if there is a lot of missing data, the algorithm might lead to many 

constant values or sudden jumps in the resampled data.  

Averaging 

An alternative is to calculate the average over some period of time. This way, the measurements around 

each of the desired timestamps is condensed in a single value. 

However, this approach might introduce artificial information into the resulting resampled data. For 

example, a pump rotation signal suddenly decreasing from 100% to 0% might be averaged to 20% - even 

though if pump rotation speeds below 40% are not supported by the system control. Similar problems 

might arise if the conditions of the measurement change during the time-interval. For example, assume 

that the temperature of the fluid in the pipes of the solar primary circuit is measured and pumps started to 

run during the considered time interval. In this case, temperatures before starting the pump may be low 

(fluid in pipe is still cold) but abruptly increase when the hot fluid from the collector passes the sensor. 

Again, averaging these values might indicate medium temperatures when indeed only hot and cold 

temperatures were present at the system. Another issue with averaging is that a single outlier in the data 

can affect the aggregated result (i.e. many measurements of 10°C and one with 175°C resulting in 25°C). In 

all the three examples above using median values instead of averages would yield better results. 

Additionally, implausible values should be identified before down-sampling to reduce the effect of outliers. 

In any down-sampling method some information is lost due to the aggregation. By using averages, minima 

and maxima are smoothed down. This might be a desired effect or introduce issues based on what the 

values are used for later in the monitoring process. For example, if the data is used for spotting outliers or 

used to recalculate other measurands, averaging the data is not always beneficial if the time-interval is too 

high. If, on the other hand, values are used for summations (i.e. calculating daily energy yield based on 

power) averaging is a better choice than using ‘nearest’ values as only aggregated information is needed 

instead of individual measurements. 

In summary, averaging is a good method to identify representative values in a certain timeframe, however, 

can only be used well if the measurand conditions do not change too much during the time. In this case, 

artificial information might be introduced and outlier might be smoothed too much. 

Spline-Interpolation 

Alternatively, one can use spline interpolation to interpolate the data first and using the results to create an 

equidistant time grid. In the case of linear spline interpolation, one can think of lines drawn between every 

adjacent datapoint of the measurement data. All the values which lie on the desired equidistant time grid 

are used for the resulting down-sampled data. The process can also be done with higher order of spline 

interpolation, however resulting in increased running time of the method of the method. 

In comparison to the nearest method, more than one datapoint is used for each down-sampled result. In 
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contrast the linear-spline interpolation assumes that the value in-between two timestamps must be in-

between the range of the two measurements, being the closer to a value the closer the timestamps are to 

each other. This is true for most measurements because of the inertia of thermal processes but not for 

signals and similar conditions as described in the averaging-method section. In the case of the desired grid 

being aligned with the logging-interval the linear-spline interpolation and the ‘nearest’-method yield the 

same results. In contrast to the averaging-method, the ‘nearest’ and the spline interpolation method 

assume that only adjacent values should be used in order to not smooth outliers too much.  

The linear-spline interpolation method is used for example by (Ohnewein, et al., 2016) for resampling the 

logging-data, using additional modifications to ensure consistency when applied to discrete variables. 

Other methods 

Finally, there are many more methods that deal with how time-series can be down-sampled while still 

ensuring that trends and characteristics are well captured. A list of methods used for reducing the number 

of datapoints for visualisation have been studied by (Stainarsson, 2013). For example, the Largest-Triangle-

Three-Buckets algorithms shows good results. It separates the data equidistantly in buckets and for each 

choses the datapoint which is the most significant as representative. The significance-score is calculated 

based on the effective area of the datapoint – that is the area which is spanned by a triangle from the 

considered datapoint to the most significant points of the adjoining buckets. In this sense, only datapoints 

are used which are discriminant compared to the adjacent datapoints in order to capture the most 

important information. A more detailed description can be found in (Stainarsson, 2013). 

While the methods discussed in the paper yield good results especially for visual interpretation, results 

from (Ohnewein, et al., 2016) stressed that there are some disadvantages of using more elaborated 

methods. First, typically more sophisticated methods lead to more computation time and second, they are 

harder to understand which results in less user acceptance. Other than that, algorithms selecting 

datapoints for each measurand separately cannot be parallelized for multiple datapoints. Thus, the 

algorithms might use values from different timestamps for two measurands, leading to inconsistencies. For 

example, the down-sampled data may indicate running pumps and no volume flow at the same time, due 

to using measurements at different timestamps for each measurand for the down sampled data. 

In summary, more sophisticated methods play a high role for visualising data. However, for down-sampling 

during pre-processing simpler methods typically suffice. This is because of the rather small difference 

between the logging- and down-sampling rate together with the typically low inertia of the measured 

values of solar thermal systems. In addition, computation time can be kept to a minimum with simpler 

methods and inconsistencies can be minimized. 

Missing Data 

Even though resampling algorithms are essential for further analysing, they might introduce artificial 

information in the monitoring data. While for some data points the introduced error can be estimated to 

be very small, for other data point interpolating missing values should be omitted. For example, missing 
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data of ambient temperature for ten minutes can be replaced with interpolated data quite easily due to its 

low thermal inertia. On the other hand, missing irradiation measurements should not be filled artificially 

with the same simple approach, as high fluctuations might have occurred during the time frame. If naming 

standards as described in section Data Acquisition are used, this behaviour can be easily implemented in a 

modular way. For example, by using a different “maximum gap” parameter for each individual 

measurement type and assigning measurement types to measurements (Ohnewein, et al., 2016).  

Of course, missing data itself may also hint to various problems, such as network issues, power failure, 

broken cables, connection problems between the PLC and sensors, or problems at the sensors. Thus, even 

if the missing values can be guessed with high probability and replaced in the monitoring data, the 

presence of missing values should be recorded and stored as well for further analysis. Missing data should 

be prevented, and faulty data acquisition remedied as soon as possible!  

Data Storage 
Once the data has been acquired and pre-processed, the data must be stored in a way that fault-detection 

algorithms and benchmark calculations can access the data they need. As some algorithms may require a 

lot of different measurements or long time periods of data, it is important to store the data in a way to 

ensure that the selection and filtering of data is fast and reliable. Especially if some analyzation is done 

manually by a domain expert (for example for diagnosis after a fault-detection algorithm spotted a 

malfunction), a fast retrieval of the data can save a lot of time and money. 

In summary, a data management system is essential for automated monitoring as it provides an interface 

for algorithms to the data. With a good setup, time can be saved due to reducing the implementation time 

of new algorithms and reduce the time for fetching data. Thus, this section deals with discussing the 

properties of the data, following recommendations about which data storage technology to use. 

Properties of the data 

To analyze which data storage technology works best, first it is important to understand some properties of 

the data which needs to be stored.  

Volume of the data 

As described in (Fischer, 2008) the amount of monitoring-data very quickly reaches values above multiple 
gigabyte. Estimated very conservatively, a solar heating system has a technical lifetime of 20 years2. 
Combined with the recommendations of chapter  

 

2 In fact, the lifetime modern solar thermal systems is expected to be at least 30 years. However, the consideration in 
the text only serve as a minimum threshold to clarify the magnitude of the acquired data, so a more conservative 
estimation is used. 
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Sensor Technology, each system should have at least 15 different sensors, with values stored each minute, 
resulting in 1.2 GB of data as the absolute minimum: 
 

𝑉lifetime ≈ 20 [
years

Lifetime
] ⋅ 365 [

days

year
] ⋅ 1440 [

minutes

day
] ⋅ 1 [

measurements

minute
] ⋅ 15[measurements] ⋅ 8 [

Bytes

measurement
]

≈ 1.2 [
GB

Liftetime
] 

 

However, in practice the number of sensors used in big-scale systems is in the range of 100 to 1000 

measurements, depending mainly on the amount of collector temperature sensors and thus on the amount 

of collector area. When more than one system is stored in the same database, we arrive at approximately: 

𝑉system =
𝑉lifetime

20[years]
≈ 4 [

GB

year
] ,  𝑉100 Systems = 100 [Systems] ⋅ 𝑉lifetime = 8 [

TB

Lifetime
] 

In conclusion, this shows that the volume of data is in the range of multiple GB to few TB. However, this can 

easily scale to a much higher amount. Based on current trends in the energy sector, higher frequencies for 

data logging are used and the number of systems is increasing. Plus, more and more system control 

parameters are added to the monitoring data and the number of sensors per system is increasing. Due to 

the exponential data growth that can be seen in a lot of sectors, the values above merely serve as 

conservative estimate for a lower bound. 

Data Categories 

The focus of the data storage is to store the monitoring data of the solar heating systems. However, 

depending on the application, also additional data might be stored, for example details that are needed for 

some fault-detection algorithms and KPI calculations. For example, meta-info such as the number of 

collectors at the system, their orientation, the geographical location of the system and similar values might 

be interesting for many algorithms and thus should be stored in the database as well. Additionally, it makes 

sense to add information regarding the system control, like reference or set temperatures, which might be 

needed to interpret the sensor data. Finally, also the result of fault-detection algorithms and key 

performance indicators need to be stored, as they need to be accessible for further analysis. 

In effect, the following categories of types of data could be categorized – following in large parts the results 

of (Fischer, 2008): 

 

Category Description 

Sensor Data Typically consisting of timestamp, value, and ID specifying what was 
measured. Recommended to be stored in equidistant timesteps to allow 
calculations concerning different measurements. 

System Control data Data describing the system control parameters of the system, typically in 
similar form to sensor data with values for timestamp, values and parameter 
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ID. Depending on how often the control parameters change, it makes sense 
to either store the data “on-change” so a new entry is written only if the 
parameter was changed, or in equidistant timesteps similar to the sensor 
data. In the first case, less data needs to be stored while in the second case 
calculations in combination with sensor data can be done easier.   

System Info This category consists of additional information on the systems, such as the 
number of collector units, the orientation and tilt of collectors, the type of 
fluid used in the primary circuit, or the expected amount of solar yield based 
on the design of the system. The corresponding values can be of different 
type or may be implemented as references to documentation. Naturally, the 
system info stays the same over long periods of time. However, some values 
might also change, as for example more collectors are added to the system.   

KPI results Key performance indicator data is very similar to sensor data. However, they 
are often calculated for time periods instead of consisting of timestamp/ 
value pairs. Instead they typically consist of values for the period-start, 
period-type, value and KPI ID. For the periods it makes sense to use time 
periods that correspond to the behavior of the system, which in turn 
depends on the irradiation and the demand. As these typically follow 
seasonal, daily or more frequent patterns, periods like minutes, hours, days, 
weeks, months and years are the most interesting for the calculation of KPIs.  

Fault-Detection results Depending on the type of fault-detection algorithm, the results are either 
timestamp/value pairs where values derived by a model are stored for each 
equidistant timestamp (e.g. Parity-Space methods) or consist of error-
notifications like the detection time, the time the fault has occurred, a 
message explaining the fault, and a severity rating and information about 
which algorithm detected it.  

Fault-Detection 
Parameter 

In addition to saving the results of the fault-detection algorithms, 
sometimes it is important to also save the parameters of algorithm for each 
system. For example, if machine learning is used for training a classifier to 
detect faults, the data from the trained algorithm can be stored such that it 
does not need to be trained at every run. Because of the different types of 
fault-detection parameters, the type of data that needs to be stored cannot 
be generalized. In addition, it might be interesting to analyze how the 
parameters change, which increases the complexity for storing the values. 

User Management Finally, as the data might be used for visualizing the data or might feature 
applications that allow notifications, a user-management might be stored in 
the data storage as well. 

Additional data Additional data might be stored which help during the process of analyzing 
the data. For example, information regarding the system representation 
(see below) or the conversion of units to standard units. 
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Data-Storage Technologies 

In the previous section the characteristics of the data that need to be stored have been elaborated. With 

this information it is possible to analyse which storage technology works best for storing it. In fact, the 

storage technology should have the following properties: 

Usability: Easy to use for automatically storing the data and fetching data manually as 

well as via algorithms. The implementation of new algorithms working with 

the data storage is fast. 

Query speed: Data can be selected and filtered in a reasonable amount of time.  

Writing speed: Writing data of multiple systems into the storage does not prevent users from 

running queries for a long period of time. The data is stored fast enough such 

that fault-detection algorithms can respond reasonably fast to malfunctions of 

the system (i.e. an algorithm always can use the data from at least the 

previous day). 

Security: Allows to prevent unauthorized users from changing values in the data 

storage.  

Safety:  Allows easy backup of the data. Ensures that values are stored correctly. 

Flexibility: Allows to store the data of all data categories described above. 

Allows to add additional sensors or delete sensors during operation of the 

system. 

Allows to cope with name changes or similar operations. 

Scalability: Allows to scale for multiple systems and high numbers of sensors at the solar 

system, more accurately for storing data volumes in the range of GB to 

multiple TB. 

Independence: Independent of the solar system network. No software/hardware needed at 

the customer site. 

File-based storage (CSV format) 

Traditionally, monitoring data was often stored in files with yearly, monthly or daily data in a comma-

separated-file (CSV) format. As these files can be viewed and edited by Excel and similar tools domain 

experts, scientists as well as customers can easily interact with the data. Additionally, appending new data 

to files is very fast, which makes data logging in this format beneficial. 
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However, there are some drawbacks to this kind of data storage: 

First, as hinted above, data must be stored in (daily-, monthly-, yearly-) chunks rather than in one large file. 

If not separated, the file would quickly grow too large to be read (by Excel for example). As some 

algorithms need the whole data, an algorithm must be implemented to recombine data from different files. 

If on the other hand, only a small section of the data is needed – for example the values of one sensor for a 

larger time-period – all files containing some part of the data must be read in. In effect, much more data 

than the desired output needs to be fetched initially, and filtering can be applied only after reading the 

whole file. Again, this selection-and-filtering would have to be implemented by some file-management 

algorithm, to allow fault-detection methods to access the data. 

Secondly, organizing and updating the data can be troublesome for CSV files. For example, datapoint names 

might get changed or added during the lifetime of a solar system. This would result in changes in the CSV 

file structure which either need to be applied to all files or the algorithms accessing the data would need to 

deal with structure changes. Additionally, there might be references from one table to another, for 

example for system representation and datapoints. As this is not implemented in CSV, changing values in 

one table need to be updated in other tables manually. Aside from references, it can be complicated to 

store the different categories of the data in a file-based format. 

Finally, there is no inbuilt user-management which allows and disallows users to read and write the data. 

However, this could be implemented by altering the security properties of the directory. 

In summary, CSV files are good for intermediate storage of sensor data but lack the functionality to select, 

filter and organize the data efficiently and securely. Nevertheless, the format is easily interpretable and can 

be understood by almost everyone as Excel is a very commonly used software. 

Relational Database Management Systems (RDBMS) 

In more modern approaches relational database management systems (RDBMS) are used (Fischer, 2008; 

Ohnewein, et al., 2016) for storing the data. These databases with their origin in 1975 save the data in 

tables, each consisting of multiple columns and rows of data. A user can interact with the tables via using 

SQL (structured query language) for querying and writing new data into the database. To allow faster 

selection and filtering, special data structures like indices can be used. In addition to the SQL interface for 

writing and selecting the data, the RDBMS includes other features such as auto-updating references to 

other tables when some value is changed, secure transactions such that changes are consistent and inbuilt 

user management. Due to storing the data in a row-column manner while references to other tables can be 

made, RDBMS can be used for any of the above-mentioned data categories if designed correctly. However, 

changing the structure of the database during operation is not well supported and should be avoided. 

Hence, care must be taken during the initial design of the RDBMS layout. 

While they avoid most of the drawbacks of CSV, relational databases require more knowledge to work with 

and if designed badly, can still have high computation times for storing and selecting data. Plus, many 

people want to use Excel for their analyses. This can however be tackled as most RDBMS software tools 

support exporting the data to CSV format easily. In summary, SQL is a good way to store the monitoring 
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data as this type of data storage technology is well-established and has lots of documentation while 

providing the most necessary properties described in the introduction of this section. 

NoSQL-databases 

There are some cases where relational databases reach their limit. For example, when a lot of data needs 

to be stored, the volume of the data may not be stored on one server anymore. However, classical RDBMS 

are based on the premise that all the data is accessible on one device. Instead of increasing the server 

capacity, which can be very costly, one approach is to use many devices which share the data. Another 

problem for relational databases is when too much data needs to be stored at the same time. In this case 

again a distributed system can be used to process and store the data in parallel. Another idea is to use data-

structures other than relational tables to store the data more efficiently. Additionally, as described above, 

RDBMS need a predefined structure to store the data. However, there may be cases where the structure of 

the data changes rapidly over time or is unknown at all, calling for databases which can deal with this kind 

of data. 

The problems described above are the so called the four big V of Big Data: Volume, Velocity, Veracity and 

Variety. For these problems new database concepts called NoSQL (Not only SQL) databases were developed 

that cope with some of the problems above. In fact, it is possible to differentiate between some main types 

of NoSQL databases: 

 

• Distributed SQL databases:  

One way to cope with huge amounts of data is to store the data on different servers. In this way, costs can be 

reduced as multiple smaller servers are often cheaper than one very large one. However, this means that data 

is not stored together but is separated upon multiple devices. While for the user this should not make a 

difference, the database system thus needs to cope with knowing where to store and find the data and how to 

combine it.  To ensure that the database is still functioning if some of the servers are offline, data is often 

stored redundantly on multiple servers.  

The famous CAP theorem states that for any distributed database system, the properties Consistency, 

Availability and Partition tolerance can never be fulfilled simultaneously. Here, consistency means that the data 

in the database is the same for all devices which store the same data. Availability means that a user can always 

access the data in a reasonable amount of time without being locked, and partition tolerance means that the 

software still works even though some of the servers are offline due to network errors for example. 

Implementations of all distributed data storages thus guarantee these three properties only to a certain extent, 

focusing on different trade-offs of between consistency, availability and partition tolerance.  

Thus, there is a lot of overhead and additional work required to distribute the data and manage it. However,  
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even though this may increase the computation time for writing data (as data is stored redundantly) and makes 

operations on the data more complex, it makes the database highly scalable for huge amounts of data and it 

can reduce the reading time as data from different servers can be read in parallel. 

One way to separate the data meaningfully would be to store all information regarding one system on the 

same partition. This way a user focusing on one system has all the data needed on one server performing the 

computations, while other systems can be accessed via other partitions in parallel. Hence, this distribution 

approach makes sense if datapoints are more often compared internally than across systems. Another 

approach would be to enforce fast access to recent data by storing historic data seperately. This follows the 

assumption that recent data is of much more interest to users then measurements multiple years ago. 

In summary, distributed databases are recommended if the data exceeds volumes such that increasing the 

storage capacity of one centralized server is not cost-effective anymore. In addition to allowing more data to 

be stored it can also be used to handle operations on each server in parallel. Thus, it can also be used to speed 

up the extraction speed of data. Another benefit is that data can be stored at system site while still making 

access from algorithms easy. This is the case as distributed database management systems typically provide an 

interface which is the same independently from where the data is stored. The drawbacks are higher complexity 

in handling the software in comparison to classical relational databases and slightly more time needed for 

writing data. 

 

• Column-oriented Database 

In SQL databases data is stored in tables in a row-wise manner, such that if a row is selected all the data in the 

columns are read into the memory. If the table has a lot of columns, but only a small amount of them are 

needed during a query, still all the columns must be read with this behaviour. Column-oriented databases 

instead store the data in column-wise fashion where for each column, key-value pairs are stored. Hence, the 

columns of the table are not connected and if a query is run only the relevant columns need to be read in.  

While this increases the speed for fetching column-data from tables with large number of columns, this also 

increases the storage requirements. This type of NoSQL database might be relevant for sensor- or system-

control data to store timestamp value pairs in one column for each measurement making it easy to extract the 

information without loading many columns. 

 

• Key-Value Stores: 

Key-Value databases save data in key-value pairs, while the value can be of arbitrary shape and is more flexible 

than in the SQL case. For example, one can store XML files containing the values of all sensors at a certain 
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timestamp as values and retrieve the values by querying for the corresponding timestamp. This key-value 

design can be especially helpful when facing very unstructured data – for example if the amount of datapoints 

varies from one timestamp to another – as the information in the value can be of arbitrary size. This contrasts 

with the relational database system, where new columns would have to be created to store new data, or a lot 

of NULL values would be inserted.  

Because of this behaviour and the simplicity, key-values stores are very good at handling data with high velocity 

and veracity. However, the compromise in storing unstructured data sometimes makes analysing the data 

more troublesome, as the algorithms accessing the data must deal with inconsistencies in the content of the 

values. While this type of data-storage technology is good at collecting vast amounts of unstructured data 

rapidly, the data gathered after the pre-processing step in monitoring (as described above) is already 

structured. Additionally, the velocity of the monitoring data with minutely measurements is rather low. 

Therefore, both main advantages of key-value stores do not have a significant effect on storing the monitoring 

data.  

  

• Document Stores: 

Relational database systems try to minimize the redundancy of the data by allowing references from tables to 

one another. If this data is selected both tables need to be read and filtered, and the results recombined 

(joined) again to give the requested data. Depending on the frequency of such queries and the structure of the 

tables this may be very time-consuming. In contrast, document-stores allow to store information together 

which may be needed together. For example, in for a web-application comments to a page would be stored 

together with the page as this information is highly related to each other’s. Other than the Key-value store the 

structure of the database must be defined, however this allows the user to use the information inside the 

documents for queries. 

While this set up seems not very helpful for sensor data, it might be good for storing system-information. As 

the structure inside the documents can be used for filtering but are less strict then the fields of relational 

databases, one could for example store data related to a component in a document. Thus, when meta-

information about the system-part is needed all valuable information would be fetched together. 

 

• Graph Databases: 

Finally, relational databases are less powerful when storing data about relations between objects. For example, 

in the case of Facebook, graph databases are used to store the relationships between the users. However, they 

offer less benefit when storing senor data for example. 
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In conclusion there are good reasons to consider NoSQL databases for some of the data categories needed 

for monitoring. However, if the data does not exceed high volumes or extremely fast responses are needed, 

relational databases are enough to provide the needs for automated monitoring.  

System-representation 

As described by (Dröscher, et al., 2009) solar systems often vary in terms of their hydraulic setup. This 

makes it difficult to automatically interpret the data and assign processing- and fault-detection-algorithms 

accordingly. To make the information of the hydraulic setup accessible to monitoring-software various 

approaches exist: 

System-based design: 

If only one system is monitored, then algorithms and software-components could be designed especially 

for the corresponding system. This approach is sometimes used by researchers that focus on single systems 

with special applications. As an advantage, algorithms can be designed to give detailed insights into this 

special system. In the case of multiple systems, however, this method prevents the re-usability of the 

algorithms and leads to a high time-consumption upon including new systems in the monitoring process.  

Representative layouts:  

If multiple systems are addressed, often they are analysed in terms of representative layouts like “solar 

system with district heating”, that are used as representative for a wide range of similar system concepts 

(for example in (Knabl, et al., 2012; Fischer, 2008)). If a system fulfils the requirements of the 

representative-layout, the corresponding algorithms can be used for evaluating the system. As advantage, 

this approach allows to generalize system-layouts such that multiple systems may be monitored with the 

same algorithms. Plus, upon introducing a new system to the monitoring software, minimal resources are 

required to do so. On the negative side, the layouts may be too inflexible to be applied on more 

complicated system hydraulic setups but can only be applied to a small portion of systems. Plus, 

implementing new algorithms needs more domain-knowledge as they should be able to generalize to more 

applications. 

Component-based modularisation: 

As a different approach, one can build up the system hydraulic by specifying each component of the system 

and combining them to the form different system layouts. This approach is used in the simulation software 

TRANSYS for example to build up various systems. The benefit is that similar to the system-based-design 

the hydraulics of the system can be modelled quite exact, making the evaluation more accurate. In contrast 

to the System-Based Design, the modularisation of the components allows to formulate re-usable 

algorithms. As a disadvantage, the user must specify a lot of information during the implementation of new 

system and manually combine components, which is a tedious task. 
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Modular framework design: 

As an alternative to the component-based modularisation and the representative layouts (Dröscher, et al., 

2009) suggested using modular framework design. The solar systems are separated into sections like the 

solar circuit or the heat storage to form multiple modules, that can be recombined to form various system 

layouts. The idea is to use the fact that at each module the components are the same independently of the 

system application. To compensate small differences in the hydraulic setup, variations of each module are 

proposed. The method discriminates between modules describing the basic function of the components, 

module-variants describing various forms for hydraulic setups and detail-variants which deal with different 

variants at specific positions inside the module (Dröscher, et al., 2009; Feichtner, 2010). The goal of this 

approach is to minimize the time-consumption when implementing new solar systems to the monitoring 

software while still allowing more complicated setups. 

Block-based modularisation: 

Another more object-oriented approach to map the data to the system-layout is to use a block-based 

modularisation that was introduced by (Ohnewein, et al., 2016). It was developed to enable a highly 

flexible, efficient, effective and intuitive representation of the system. It works by defining system blocks, 

each consisting of one or many datapoints and system-parameters similar to the modular-framework 

approach. However, the difference to the modular-framework representation is that the blocks can be both 

formulated on high- or very abstract levels of detail. Plus, the blocks can be combined in different ways and 

may be hierarchically dependent on each other. 

For example, one block could be the “heat-meter” block consisting of two temperature, a volume flow and 

a power measurement. This block can be assigned to all heat-meters of a plant, as the same calculations 

should be performed on all of them (i.e. checking that the heat meter works correctly). However, the block-

based approach would also allow to formulate a “solar-circuit” block, which may consist of different sub-

blocks for example an instance of a “heat-meter”, “pump” and “collector” block. 

In conclusion, this allows to formulate algorithms both on small subsections that are always similar like the 

heat meter, but also on larger-sections of the systems to give insights about the overall-performance of the 

solar plant. Thus, it is a combination of the modular-framework design and the component-based 

modularisation 

One of the drawbacks of this approach is that - while being flexible - the system layout must be specified by 

assigning blocks to datapoints and blocks to blocks for each system. However, this can be automated if a 

good naming scheme is used (see Data Acquisition). In this case, helper algorithms may easily be able to 

assign datapoints to blocks simply according to their name. 

Key Performance Indicators 
In order to detect trends in the long-term performance of solar heating systems, component- and system-

related benchmarks can be computed. With this, the measurement data which is hard to interpret without 
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visualisation can be distilled into key-performance-indicators representing the status of the system or 

components. Thus, they allow to get an overview of the system quickly, enable comparisons to other 

systems and make it possible to share the potential of the technology with others. However, they may also 

be a prerequisite for certain alarm algorithms. For example, analysing the key performance indicator of a 

component may show that the efficiency of the component steadily decreases, and repair is needed. 

Recommended Benchmarks 

Thermal Energy Yield: 

The thermal energy yield is one of the most important benchmarks for monitoring personal and 

stakeholder as producing as much usable energy as possible is the main task of the solar system. By 

comparing the energy yield with historic values or design, obvious dysfunctions of the system can be 

detected. Usually, the energy yield can be calculated based on the heat meter reading: 

𝑄𝑝𝑒𝑟𝑖𝑜𝑑 =  𝑒𝑚𝑃𝑒𝑟𝑖𝑜𝑑_𝑒𝑛𝑑 − 𝑒𝑚𝑝𝑒𝑟𝑖𝑜𝑑_𝑠𝑡𝑎𝑟𝑡 

Where 𝑒𝑚 is the accumulated energy meter reading and 𝐸𝑝𝑒𝑟𝑖𝑜𝑑  [kWh] is the yield corresponding to the 

section of the system that is measured via the heat meter. If not directly measured by a heat meter, the 

energy yield can be calculated via inlet and outlet temperatures and volume flow of the section: 

𝑄𝑝𝑒𝑟𝑖𝑜𝑑 = ∫ �̇�(𝑡)
𝑝𝑒𝑟𝑖𝑜𝑑

𝑑𝑡 = ∫ 𝛥𝑇(𝑡) ⋅ 𝑐𝑝(𝑇𝑚𝑒𝑎𝑛(𝑡)) ⋅ 𝑣𝑓(𝑡)
𝑝𝑒𝑟𝑖𝑜𝑑

𝑑𝑡  

Where �̇�(𝑡) [kW] is the instant power, 𝛥𝑇(𝑡) [°C] is the temperature difference between inlet and outlet 

temperature, 𝑣𝑓(𝑡) [m³/h] is the current volume flow and 𝑐𝑝(𝑇𝑚𝑒𝑎𝑛(𝑡)) [kWh/m³.K] is the heat capacity of 

the fluid in the pipes at the average temperature 𝑇𝑚𝑒𝑎𝑛(𝑡) =
𝑇𝑖𝑛𝑙𝑒𝑡+𝑇𝑜𝑢𝑡𝑙𝑒𝑡

2
 [°C]of inlet and outlet flow. 

 

Radiation Sum:  

In addition to the thermal energy yield the amount of radiation energy on the collector is a very important 

benchmark as it is the main source of energy of the system. Without this information a low thermal energy 

yield may correspond to a critical fault or simply low irradiation during that time. Plus, the knowledge about 

solar radiation enables to analyse energy balances (see below) and the efficiency of solar collectors (see 

below). However, in contrast to the thermal energy, which is accumulated by the heat meter, for the 

radiation only instantaneous values are measured. Thus, the radiation values must be integrated to get the 

radiation energy 𝐼 [Wh/m²]: 

𝐼 = ∫ 𝐺(𝑡)
𝑝𝑒𝑟𝑖𝑜𝑑

 𝑑𝑡 
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Energy balance: 

Based on (Knabl, et al., 2012) the calculation of energy balances is recommended in order to analyse heat 

generation and consumption. Both the input and the output of sections of the system of different time 

periods from days to years can then be compared to historic or design values. 

The energy can be calculated with heat meter measurement or temperature and volume flow 

measurements as described above. Based on the principle of conservation of energy the energy flow of 

system-sections can be analysed: 

𝑄𝑖𝑛 + 𝑄𝑜𝑢𝑡 + 𝑄𝑙𝑜𝑠𝑠 = Δ𝑄𝑠𝑡𝑜𝑟𝑒𝑑 

Where 𝑄𝑖𝑛 [kWh] is the sum of energy going in the system during some time period from various sources, 

𝑄𝑜𝑢𝑡 [kWh] (typically negative) is the energy yield leaving the section to various sinks, 𝑄𝑙𝑜𝑠𝑠 [kWh] (typically 

negative) is energy lost to surrounding due to heat losses and 𝛥𝑄𝑠𝑡𝑜𝑟𝑒𝑑  [kWh] is the additional energy 

stored at the sections components. The latter is important for sections such as the heat storage and the 

heat stored in the pipes. 

By comparing with historic values, changes can be visualised to detect dysfunctions. Furthermore, it may 

enable the operator of the system to tune the energy flow in a way to create the highest benefit for the 

customer. Apart from analysing the direction from inputs to outputs the energy balances can also be used 

to detect increased heat losses that indicate faults. 

Specific Solar Thermal Energy Yield: 

It is hard to compare the solar yield 𝑄𝑆𝑜𝑙  [kWh] of different systems as the yield depends linearly on the 

size of the collector area 𝐴 [m²] installed at the plant. Thus, by dividing the energy yield by the gross 

collector area this enables to compare different systems independently of their collector size, resulting in 

the specific solar thermal yield 𝐸 [kWh/m²]. 

𝐸 =
𝑄𝑆𝑜𝑙

𝐴𝑐𝑜𝑙
 

However, factors such as different weather conditions and orientation is not covered when comparing the 

specific solar yield of different systems. 

Effective Collector Efficiency: 

As described above the specific solar yield is an important key performance indicator as it decouples the 

energy yield from the number of collectors used at the system. However, the specific solar yield is also 

dependent on the weather conditions of the system making it hard to compare the efficiency of the 

collectors. Thus, by dividing by the radiation sum during the time-period, a more potent benchmark can be 

created. 

The effect can be more easily be understood when looking at the solar key mark equation, considering the 

parameters 𝜂0, 𝑎1 and 𝑎2 only: 
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𝜂𝑐𝑜𝑙 = 𝜂0 − 𝑎1

𝑇𝑚

𝐺
− 𝑎2

𝑇𝑚
2

𝐺
,                  𝑇𝑚 =

(𝑇𝑖𝑛𝑙𝑒𝑡 + 𝑇𝑜𝑢𝑡𝑙𝑒𝑡)

2
− 𝑇𝑎𝑚𝑏 

With coefficients 𝜂0 [%], 𝑎1[W/m².K] and 𝑎2[𝑊/𝑚². 𝐾²] describe the efficiency and first and second order 

heat losses of a collector for radiation values 𝐺 > 1000[W/m²], with 𝑇𝑚 [K] being the temperature 

difference between the average collector temperature [°C] and the ambient temperature 𝑇𝑎𝑚𝑏 [°C]. Thus, 

the specific energy yield 𝐸 can be approximated by: 

𝐸 =
𝑄𝑆𝑜𝑙

𝐴𝑐𝑜𝑙
≃ ∫ 𝐺(𝑡) ⋅ (𝜂0 − 𝑎1𝑇𝑚(𝑡) − 𝑎2𝑇𝑚(𝑡)2)

𝑝𝑒𝑟𝑖𝑜𝑑

 𝑑𝑡 

By dividing with the irradiation energy during that period we arrive at: 

�̅� ≔
𝑄𝑆𝑜𝑙

𝐴𝑐𝑜𝑙 ⋅ 𝐼
= 

𝜂 ≃ 𝐼−1 ⋅ ∫ 𝐺(𝑡) ⋅ (𝜂0 − 𝑎1𝑇𝑚(𝑡) − 𝑎2𝑇𝑚(𝑡)2)
𝑝𝑒𝑟𝑖𝑜𝑑

 𝑑𝑡 = 

�̅� ≃ ∫
𝐺(𝑡)

∫ 𝐺(𝑡) 𝑑𝑡 
𝑝𝑒𝑟𝑖𝑜𝑑

⋅ (𝜂0 − 𝑎1𝑇𝑚(𝑡) − 𝑎2𝑇𝑚(𝑡)2)
𝑝𝑒𝑟𝑖𝑜𝑑

 𝑑𝑡 

If we follow the (wrong) assumption that that the radiation is independent of 𝑡 we can extract 𝐺 and get to: 

�̅� ≈ ∫ ⋅ (𝜂0 − 𝑎1𝑇𝑚(𝑡) − 𝑎2𝑇𝑚(𝑡)2)
𝑝𝑒𝑟𝑖𝑜𝑑

 𝑑𝑡 ⋅
1

𝑡𝑒𝑛𝑑 − 𝑡𝑠𝑡𝑎𝑟𝑡
 

Note that the equation above is the definition of an average:  �̅� = ∫ 𝑥
𝑏

𝑎
𝑑𝑡 ⋅

1

𝑏−𝑎
. Because of this, �̅� can be 

interpreted as the average efficiency of the solar collectors over the time period. Even though the 

assumptions made in the process are not true, the resulting KPI �̅� [%] as defined above can nevertheless be 

seen as an “effective” collector efficiency and be helpful to analyse the efficiency decrease of the collectors 

for example or to compare collectors to another. Alternatively, this can also be seen as energy efficiency 

ratio (see below) between the available radiation on the collectors 𝐴𝑐𝑜𝑙 ⋅ 𝐼 and the solar yield 𝑄𝑆𝑜𝑙. 

Thermal Energy-Efficiency-Ratio: 

By dividing the energy yield of each circuit by the amount of energy that was introduced in the system 

during the time-period, one can also compute the Energy-Efficiency-Ratio: 

𝐸𝐸𝑅𝑡ℎ =
𝑄𝑜𝑢𝑡

𝑄𝑖𝑛
 

For example, at the solar circuit this can be used to analyse how much of the available irradiation was 

converted to heat and transferred to the consumer (Knabl, et al., 2012). If the collectors are for example 

covered by dust, the energy efficiency ratio of the solar circuit would be decreased. As the energy-
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efficiency ratio is less dependent on external factors compared to the energy yield, it makes the 

comparisons to historical or design values much easier. While this can be done for each circuit, the Energy-

Efficiency-Ratio is especially used for describing the solar and the chiller circuit. 

Electric Energy-Efficiency-Ratio (Chiller, External Heating): 

In addition to the thermal energy efficiency ratio, it might also be interesting to see how much electric 

energy is needed to produce the required thermal energy: 

𝐸𝐸𝑅𝑒𝑙 =
𝑄𝑜𝑢𝑡

𝑄𝑒𝑙
 

Thus, high values mean that there is not much electric energy needed to produce energy. While this key 

performance indicator can be applied to each section of the system, the electric consumption of pumps, 

system control and similar components is usually considerably lower than the produced energy of the solar 

system. Some exceptions where the electric consumption cannot be neglected however are external 

(electric) heating, absorption cooling machines and cooling towers. For all these applications, high 𝐸𝐸𝑅𝑒𝑙  

values are critical to prove the competitiveness of the technology in contrast to traditional heating and 

cooling methods. 

Operating Hours: 

Even though the operating hours of certain components may seem unimportant, this information is very 

important to detect faults at control levels. Assume for example a fault at the control which disables the 

chiller even though enough energy is available and there is a demand for cooling water. No balancing 

method or energy efficiency ratio algorithm can be used, as there is simple no energy provided to the 

chiller. When looking at the operating hours however and compare with historic values, the fault would be 

detectable. Of course, a more sophisticated algorithm may check this behaviour as well by comparing 

available energy, production and demand. Nevertheless, information about operating hours may also be 

interesting to study the amount of time a certain component is unused, serviced or out of order, or to 

predict the wear of the component. 

Number of Starts: 

The number of starts is especially interesting for identifying clocking behaviour of the system. For example, 

some components like absorption chiller work best when operated continuously for some time due to 

warm-up and cool-down effects. Hence the number of starts may be used to optimize the system 

production.  

Amount of missing data: 

The occurrence of missing data is also a very important information for analysis of solar systems. First of all, 

it might be indicators to bad communication-networks, black-outs at the plant-site, sensor faults or various 

other problems during data acquisition. Furthermore, this information may be crucial for understanding the 
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results of machine learning approaches, as biased measurement data may lead to wrong estimations. 

Most importantly, if data is missing no other faults can be detected during that time, thus introducing a 

high risk for the system. Because of that, it must be the top priority to reduce the amount of missing data 

as much as possible.  

Statistics (Average/Count/Median/Min/Max/Quartiles…): 

Finally, various statistics of the measurement data may give insights and a good overview of the operation 

of the system. For example, leakages can be detected easily when looking at the minimum pressure and 

compare with thresholds. The same applies for the detection of collector-stagnation or overheating of 

heat-storages and chillers. 

Fault-Detection 
The detection of faults is the core part of the monitoring process and allows the monitoring-staff to detect 

problems or malfunctions at the solar system. This information is crucial to react to system failures in time 

or to prepare and plan for repairs and services. Hence, high-performing fault-detection algorithms and 

good error-management is needed in order to ensure the system performance and reduce operating costs.  

Properties of faults 

The International Federation of Automatic Control defines a terminology for fault-detection related terms: 

Table 4: Terminology related to fault-detection based on (Isermann & Ballé, 1997). 

Term Definition 

fault An unpermitted deviation of at least one characteristic property or parameter of 
the system form the acceptable / usual / standard condition. 

failure A permanent interruption of a system's ability to perform a required function 
under specified operating conditions. 

Disturbance An unknown (and uncontrolled) input acting on a system. 

malfunction An intermittent irregularity in the fulfilment of a system's desired function 

error A deviation between a measured or computed value (of an output variable) and 
the true, specified or theoretically correct value. 

Symptom A change of an observable quantity from normal behavior. 

Residual A fault indicator, based on a deviation between measurements and model-
equation based computations. 

 

The definitions above provide helpful insights to understand some important properties of faults and fault-

detection algorithms: 
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Fault-indicators: 

It is important to keep in mind that faults cannot be detected by itself but only via the errors, residuals and 

symptoms the fault introduces. Unfortunately, as a result, similar symptoms may occur for different types 

of faults, making the task of identifying the fault harder. Hence, fault-detection algorithms may only notify 

the user of the fault and leave the interpretation to further analysis or to a fault-diagnosis algorithm. 

Hierarchy: 

In addition, faults at data-acquisition and transmission also effect the monitoring data. As a result, faults at 

later steps of the data-flow-chain like the transmission might make it impossible to correctly interpret faults 

at earlier steps such as component or system faults. In fact, one can formulate a hierarchical dependence of 

faults corresponding to different parts of the data-flow chain (Fischer, 2008). For example (see Figure 7), if 

the transmission of the data fails, there is no way to deduce the status of the components of the system. 

Similarly, data from broken sensors cannot be used to interpret the correctness of the system control and 

the components. Finally, some faults at system control may make it impossible to detect component faults, 

as for example the collector field might not be evaluated if the pump is not activated correctly. 

 

Figure 7:Dependency of faults at different steps of the data-flow chain. 

It is therefore recommended to run fault-detection algorithms dealing with “higher-level” of faults first. In 

contrast, “lower” level algorithms can be run only if the corresponding “higher” ones are successful to 

ensure the proper execution of the algorithms. Again, the dependency visualises the importance of proper 

data-acquisition and processing. 

Categorization of faults: 

As the definitions in Table 4 suggest, faults only describes an abnormal behaviour of the system but give no 

insight about the effect on the system. For example, a fault may either lead to a minor and insignificant 

disturbance or even to a serious and costly system-failure. Because of their different properties, faults are 

often categorized by their risk for the system. One possible way to evaluate the effect on the system is by 

using the Failure Mode and Effect Analysis (FMEA) often used in risk-management (DIN EN 60812). With 

this method, faults are rated with integer numbers based on their occurrence rate, severity and detection 

rate. As extension to the Failure Mode Effect and Criticality Analysis further introduces the Failure Risk 

Priority Number which can be derived by multiplying the severity with the occurrence rate to give a 

measure about which fault poses the biggest risk (Feichtner, 2010; Faure, et al., 2016). The identification 

and categorizations of faults is extremely helpful in order to evaluate and optimize monitoring tools by 
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checking their coverage and encourage new fault-detection methods where needed. 

For example, the results from the literature study of (Faure, et al., 2016) can be found in Figure 8. 

 

Figure 8: FMECA result of (Faure, et al., 2016) displaying most critical failure modes. 

Fault-Detection-Algorithms 

According to (Faure, et al., 2020) fault-detection algorithms can be split into three main groups depending 

on the model and knowledge they rely on (see Figure 9). For example, the quantitative-model-based 

methods uses physical models of the system to compare expected and measured data. In contrast, the 

qualitative-model-based methods use functions defined by solar experts relying on their experience to 

detect faults in a decision-based manner. Finally, process-history-based methods use machine learning 

approaches to compare the system behaviour with historic data. Based on (Faure, et al., 2020) quantitative 

and qualitative methods are most commonly used while history-based approaches are emerging in the last 

decade.  

System-Part Component Failure Mode Occurance Rate Effect Failure Risk Priority Number

Solar collector temperatur sensor wrong measure 5 4 20

heat exchanger input/output temperature sensor wrong measure 4 4 16

Solar collector temperatur sensor no more measure 3 5 15

heat exchanger input/output temperature sensor no more measure 2 5 10

pyranometer no more measure 2 5 10

controller breakdown 2 5 10

controller non-optimal control 3 3 9

Solar Pump never starts 5 5 25

hydraulic connectors leak 4 3 12

heat transfer fluid bubbles in the heat transfer fluid 3 4 12

pipes leak 3 3 9

pipes bad hydraulic balancing 2 4 8

expansion vessel too low pressure 2 4 8

solar pump too low flow 2 4 8

Secondary transport pumps never starts 3 5 15

Storage storage tank heats less than expected 4 3 12

Solar Collection solar collector produces less energy than expected 5 2 10

controller

Primary transport
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Figure 9: Hierarchical classification of fault-detection methods 

Expert Systems: 

Expert systems use decision-based rules formulated by solar experts to detect faults. They are typically 

algorithms that don’t require sophisticated calculations but simply throw an error if a measurement or 

benchmarks is above or below a certain threshold. For example, leaks at the solar circuit can easily be 

detected by setting a minimum threshold for the solar pressure. The advantage of this type of fault- 

detection method is that it is easy to implement and interpret, and that fault-isolation is often included. 

That means that the algorithm can tell accurately in which part of the system the fault occurred. As a 

drawback, expert-systems-methods often focus on specified faults, leading to lower fault-coverage-rates 

than other methods. Examples for expert-system-methods can be found in (Feichtner, 2010; Fischer, 2008). 

Parity Space: 

Parity space methods use physical models to calculate the difference from measured quantities to the 

values derived from the models. If the difference is too high a notification is thrown. For example, 

differential equations that describe the behaviour of components can be used to simulate the performance 

of the component. By comparing measured and predicted values faults can be detected. One common 

example is to use the solar key mark specification of collectors and calculate the expected solar yield based 

on the measured radiation, return temperature and ambient temperature. Again, high residuals may 

suggest a fault at the solar circuit. As a drawback, the formulation of parity space models often needs 

considerable amount of domain knowledge.  An overview of methods for analysing the collector efficiency 

can be found in (Ohnewein, et al., 2020) containing an overview of collector array tests and introducing a 

new approach called D-CAT.  

Observer: 

As quantitative model-based approach it uses a physical model of the system in order to detect faults. With 

Observer methods a mathematical formulation of the system is constructed that can be used to mimic the 
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behaviour of the system, also enabling to calculate parameters which are not measured by the system. The 

observer build with this model then operates on monitoring data in real-time, such that the measurement 

data is used to predict the values of the next timestep. When the estimated and measured values differ to 

much this indicates a fault. 

The benefit of this method is that it models the system very closely and in real-time. Thus, it is easier to 

isolate the fault in contrast to parity-space methods which are vaguer about which component might be 

malfunctioning. Secondly, the response to a fault is very fast and can be handled immediately. Observer 

methods can especially be used for optimizing system-control as done in (Lichtenegger, et al., 2016) and as 

they rely on physical models, can be used in the design phase of the system or as “digital-twin” for testing 

new control- or optimization-strategies. On the hindsight, the methods are hard to understand due to their 

sophisticated mathematical formulas. Moreover, translating the models to other systems is not always easy 

as they should follow the layout of the system very closely. Another problem is that most physical models 

of solar systems rely on assumptions that make the computation easier or possible at all. Thus, some 

system behaviour might not be modellable by this approach. 

Identification-based: 

The identification-based methods are similar to the quantitative-model-based methods in regard that 

measured values are compared to values calculated with a model of a component or system part. The big 

difference is in the way the model is created. In the parity-space methods the (sometimes very 

complicated) underlying physics of the components is used to derive models, while in the identification-

based method the model is created using machine learning approaches in combination with the historic 

measurement data. 

For example, artificial neuronal networks (ANN) can be trained to model any kind of correlation between 

some input and output variable. When used correctly, the ANN can be trained with historic data until the 

output of the network matches with the data. When used with new data and comparing measurement to 

the derived output of the ANN, changes at the system can be detected (Feierl, et al., 2019).  

As a more specific example, historic data of the irradiation, the ambient temperature, the solar return flow 

and solar yield might be used to predict the future solar yield of the system. 

As machine learning approaches only use the data from the system, the created models often more 

accurately predict the behaviour of the system in comparison to parity-space models. This is because the 

physical models often use simplifications or approximations in order to keep the model simple. If instead 

very accurate models would be used in parity-space methods the resulting calculations are very 

complicated, hard to implement and lead to a long runtime. Instead machine learning approaches enable 

the user to model complicated functions very accurately in reasonable amount of time. However, there are 

two major drawbacks of the identification-based methods: 

First, as machine learning approaches, the methods need real measurement data in order to work 

sufficiently. This is especially a problem as these methods are hard to apply in the design phase of the 

system as no data of the system is available yet. Even if some similar input data is available, it cannot be 
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guaranteed that the trained model performs well as it only learned to approximate a completely different 

system. Another problem with the training data is that only operating states can be modelled well which 

also are present in the training data. This also means that it is not possible to compare measurement to an 

optimal behaviour but only to system-states previously observed. Hence, if faults do already exist during 

the acquisition of training data, machine learning approaches will not be able to detect these dysfunctions. 

Second, identification-based methods are often black-boxes, which means that it is very hard to interpret 

how the trained method works. Thus, it is often only possible to detect a fault, however, the diagnosis of 

the fault (i.e. what is wrong and how to fix it) is left to domain-experts and further analysis. 

Classifiers: 

Instead of identification-based methods which model a system part and compare expected and measured 

values, classifier try to detect faults directly. In the classical approach, both historic measurement data and 

information about the faults occurred during that time-period are provided to the classifier. The algorithm 

then tries to find out correlations between data and faults. If sufficiently trained, the classifier can be 

applied to new data in order to detect these trained faults. While the classifiers above belong to supervised 

methods, where fault labels are known, also non-supervised classifiers can be considered. One example are 

outlier-detection algorithms that scan the data for unusual measurements or clustering algorithms that 

separate the data into groups according to faults. 

The benefit of this approach is that not only detection but also diagnosis of faults is possible. However, 

most of the drawbacks of the identification-based method apply to classifier as well: Again, if black-box 

methods are used, there is no way to understand how the classifier works. The biggest drawback, however, 

is that supervised classifier needs labelled faults as input. However, data with labelled faults are not very 

common. Plus, if the faults occur very rarely, supervised classifier cannot easily be trained to detect them. 

In contrast, results of unsupervised algorithms are harder to interpret. 

Conclusion: 

In conclusion a combination of the fault-detection systems is recommended if possible. Expert systems 

should be used as they can detect and locate faults at a low level of complexity. To ensure a better 

coverage of faults quantitative-model-based methods may be applied where possible to check component 

and system performance. The advantage of these more traditional fault-detection methods is that they do 

not rely on system-data and thus can also be used during design and construction. In contrast, process-

history-based methods may perform better and give more novel results and hence should be used as well. 

A review of current fault-detection methods can be found in (Faure, et al., 2020). 

Notification-Management 

Finally, if a fault gets detected the correct people need to be informed about it as fast as possible. Hence it 

is critical to install some type of error and notification management that send out mails and SMS. 

Depending on the criticalness of the fault, notifications should be sent to the relevant personal. When the 
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responsible person does not respond in time an escalation scheme can be used to notify representatives. A 

notification management is also important to not overload personal with a wide range of small 

notifications. Instead it combines the information in a way such that the problem can be identified and 

dealt with best. 

In practice, often a criticalness factor for faults is introduced similar to the FMECA analysis discussed 

previously. Mails are then sent according to the type and criticalness to service personal, monitoring staff, 

persons responsible for system-operation or stakeholder (Feichtner, 2010) (Fischer, 2008). For less critical 

notifications or faults that were detected where no immediate action is needed, accumulating faults and 

sending for example monthly notifications is often sufficient. It is also very important to provide a 

framework such that the fault can be analysed and understood efficiently and fast, providing meta-

information about the fault and recommend actions. 
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Appendix A 
Table 5: Recommended Measurements at the solar circuit. 

Solar 

Recommended Measurement Sources 

radiation sensor (global in collector plane) (Knabl, et al., 2012; Faure, et al., 2020) 

ambient temperature (Fischer, 2008; Faure, et al., 2020) 

pressure sensor (primary) (Knabl, et al., 2012; Fischer, 2008; Faure, et al., 2020) 

flow temperature (primary) (Knabl, et al., 2012; Fischer, 2008; Faure, et al., 2020) 

return temperature (primary) (Knabl, et al., 2012; Fischer, 2008; Faure, et al., 2020) 

flow temperature (secondary) (Knabl, et al., 2012; Fischer, 2008; Faure, et al., 2020) 

return temperature (secondary) (Knabl, et al., 2012; Fischer, 2008; Faure, et al., 2020) 

collector temperature (Knabl, et al., 2012; Fischer, 2008; Faure, et al., 2020) 

volume flow sensor (secondary) (Knabl, et al., 2012; Faure, et al., 2020) 

 

Table 6: Recommended Measurements at heat storages. 

Heat Storage 

Recommended Measurement Sources 

heat storage temperature (bottom) 3 (Knabl, et al., 2012; Fischer, 2008; Faure, et al., 2020) 

heat storage temperature (top) (Knabl, et al., 2012; Fischer, 2008; Faure, et al., 2020) 

heat storage temperature (middle) (Fischer, 2008) 

 

Table 7: Recommended Measurements at external heating. 

External Heating 

Recommended Measurement Sources 

volume flow sensor (Knabl, et al., 2012; Fischer, 2008) 

flow temperature (Knabl, et al., 2012; Fischer, 2008) 

return temperature (Knabl, et al., 2012; Fischer, 2008) 

 

Table 8: Recommended Measurements at solar cooling circuits 

Cooling 

Recommended Measurement Sources 

volume flow hot water (Knabl, et al., 2012; Fischer, 2008) 

volume flow chilled water (Knabl, et al., 2012; Fischer, 2008) 

 

3 As explained in the corresponding chapter it is recommended to use more than three sensors in the heat storage 
tank if a large-scale system is considered. 
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volume flow cooling water (Knabl, et al., 2012; Fischer, 2008) 

return temperature cooling (Knabl, et al., 2012; Fischer, 2008) 

flow temperature hot water (Knabl, et al., 2012; Fischer, 2008) 

flow temperature chilled water (Knabl, et al., 2012; Fischer, 2008) 

electricity meter hot water pump4 (Knabl, et al., 2012; Fischer, 2008) 

electricity meter chilled water pump (Knabl, et al., 2012; Fischer, 2008) 

electricity meter cooling water pump (Knabl, et al., 2012; Fischer, 2008) 

electricity meter cooling tower fans (Knabl, et al., 2012; Fischer, 2008) 

electricity meter chiller (Knabl, et al., 2012; Fischer, 2008) 

relative humidity (at cooling tower) (Knabl, et al., 2012) 

 

Table 9: Recommended Measurements at consumer circuit. 

Consumer (District Heating, Domestic Hot Water) 

Recommended Measurement Sources 

volume flow (Knabl, et al., 2012; Fischer, 2008; Faure, et al., 2020) 

flow temperature (Knabl, et al., 2012; Fischer, 2008; Faure, et al., 2020) 

return temperature (Knabl, et al., 2012; Fischer, 2008; Faure, et al., 2020) 

 

 

4 Even though (Knabl, et al., 2012; Fischer, 2008) recommend using electricity meters, for pumps the electric 
consumption can be calculated quite easily and accurately using the affinity law 1c.  


