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INTRODUCTION AND SCOPE

Replacement of metals by polymeric materials to:

 reduce weight and increase ease of 

installation

 increase reliability and lifetime

 enable attractive design at improved 

cost/performance ratio

Relevant environmental conditions:

 temperature up to 95°C 

 pressurized, water filled pipes with up to 6 bar 

(incl. oscillation) mechanical properties and 
fatigue crack growth (FCG) 

behavior at application relevant 
temperatures

SolPol-4/5 (WP-03): Solar-thermal Systems based on Polymeric Materials –

Novel Materials and Test Methods
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GENERAL BACKGROUND – REGION II

Fatigue crack growth (FCG) properties – basics

Basic assumptions of linear elastic fracture mechanics (LEFM)

(stress based: stress intensity factor K)

 linear-elastic material behavior

 small plastic zones

 K describes the crack tip near-field

relevant for applications:

Loading Mode I
(tensile and bending loads of components, pressurized pipes)

(Richard and Sander, 2012)

KI = σ ∗ π ∗ a ∗ YI

(Lang, 2013) 
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 crack length (a) increases with 

number of cycles (N)

FCG properties – cyclic loading

GENERAL BACKGROUND – REGION II

𝑅 =
𝜎𝑚𝑖𝑛

𝜎𝑚𝑎𝑥
=
𝐾𝐼,𝑚𝑖𝑛

𝐾𝐼,𝑚𝑎𝑥
= 0.1

f = 5 Hz

∆𝐾𝐼 = ∆𝜎 ∗ 𝜋 ∗ 𝑎 ∗ 𝑌𝐼
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Region I: lower limit (threshold)

Region II: stable crack growth

Region III: unstable crack growth and/or 

high plastic deformations

𝑑𝑎

𝑑𝑁
= 𝐴 ∙ ∆𝐾𝐼

𝑚

Paris-Law

FCG properties – crack growth kinetics

GENERAL BACKGROUND – REGION II
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EXPERIMENTAL – MATERIALS

Phenolic (P) Aminic (A) Specific (S)

Irganox

1098 

(P1)

Bruggolen

H164 

(P2)

Irganox

1330 

(P3)

Naugard

Super Q 

(A1)

Naugard

445 

(A2)

Bruggolen

H204 

(A3)

Stabilisator 

9000 

(S1)

Bruggolen

H3360 

(S2)

PA Polyamide 66 (PA) GF 30 – matrix material

PA-P1 1

PA-P2 1

PA-P3 1

PA-A1 1

PA-A2 1

PA-A3 1

PA-S1 0.4 0.6

PA-S2 1

PPA Polyphthalamide (PPA) GF 45
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Thermomechanical and fatigue testing

Fatigue Crack Growth (FCG)

EXPERIMENTAL – TEST METHODOLOGY
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EXPERIMENTAL – TEST METHODOLOGY – DYNAMIC MECHANICAL ANALYSIS

Anton Paar Physica MCR 502 Rheometer

test parameters

 torsional mode

 deformation: 0.1 % 

 frequency: 1 Hz

 temperature range: -60°C – 240°C

 heating rate: 3 K/min
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test parameters:

 frequency: 5 Hz

 R-Ratio: 0.1

 temperatures: 23°C, 80°C, 95°C

Instron ElectroPuls E3000 with optical crack growth measurement

EXPERIMENTAL – TEST METHODOLOGY – FATIGUE TESTS
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1 testing machine (Instron E3000)

2 machine controlling computer

3 temperature control system

4 camera controlling and 
data evaluation computer

5 glass containment

6 LED flashlight 

7 specimen 

8 camera
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measurement procedure:

 trigger of the camera system using a real time 

machine

 image recording at Fmax

Data evaluation – CT specimen
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data evaluation:

 image processing and crack length 

measurement using pixel comparison

 calculation:

 fatigue crack growth (FCG) rate da/dN vs. 

stress intensity factor KI,max

𝐾𝐼 =
𝐹

𝐵 ∙ 𝑊
⋅ 𝑓

𝑎

𝑊

EXPERIMENTAL – TEST METHODOLOGY – FATIGUE TESTS
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RESULTS – DYNAMIC MECHANICAL ANALYSIS

Storage modulus:
 PPA >> PA > PA-P2 > PA-A2

 higher deviation with increasing temperature

Glass transition temperature:
 PPA: 121°C

 PA / PA-P2 / PA-A2: 59°C / 56°C / 55°C

Storage modulus:
 PPA > PA types

 PA-A2 > PA-P2 at -50°C

 PA-A2 < PA-P2 above Tg

 significant change in deviation with increasing 

temperature

Glass transition temperature:
 PPA: 55°C

 PA / PA-P2 / PA-A2: -19°C / -22°C / -23°C

13%

3.6%

22%

17%
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RESULTS – INFLUENCE OF ORIENTATION ON FCG-PROPERTIES

PA

 significant influence of melt injection 

direction (ID);

caused by fiber orientation in force 

direction

 improved behavior for specimen normal 

to ID:

factor 3.5 at K=4

 increasing improvement with higher 

K-values (lower slope)
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RESULTS – INFLUENCE OF TEMPERATURE ON FCG-PROPERTIES

PA

 significant influence of 

temperature 

 improved behavior at lower 

temperatures (80°C):

factor 15 at K=4 

 similar slopes 
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RESULTS – INFLUENCE OF TEST ENVIRONMENT ON FCG-PROPERTIES

PA

 minor influence of water 

 slightly increased crack 

growth resistance in water 

 slope for water environment

slightly increased
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RESULTS – INFLUENCE OF STABILIZER SYSTEMS ON FCG-PROPERTIES

~1

~2.5
~2.4

~2 ~3

~1.4

PA, PA with amino based stabilizer, PA with phenol based stabilizer, PPA 
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RESULTS – INFLUENCE OF STABILIZER SYSTEM ON FCG-PROPERTIES

+7.3% +4.2% +11.2% -24.6%
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SUMMARY

Dynamic mechanical analysis

 PPA exhibits highest storage moduli and Tg-values due to glass fiber content and 

morphology

 storage moduli for PA-types with different stabilizer systems:

 PA > PA-P2 > PA-A2 at 95°C conditioned

 higher deviation with increasing temperature due to fiber content 

 similar Tg-values for PA-types with different stabilizer systems

Fatigue testing

 improved resistance for specimen normal to ID (factor 3.6) 

 superior FCG behavior at lower temperatures (factor 15)

 slightly increased performance for specimen tested in water

 material ranking:

PA-P2 > PA > PA-A2 >> PPA
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