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Abstract 

The installed area of solar collectors in solar heating fields is rapidly increasing in Denmark. In this scenario even relatively small 

performance improvements may lead to a large increase in the overall energy production. Both collectors with and without 

polymer foil, functioning as convection barrier, can be found on the Danish market. Depending on the temperature level at which 

the two types of collectors operate, one can perform better than the other. This project aimed to study the behavior of a 14 solar 

collector row made of these two different kinds of collectors, in order to optimize the composition of the row. Actual solar 

collectors available on the Danish market (models HT-SA and HT-A 35-10 manufactured by ARCON Solar A/S) were used for 

this analysis. To perform the study, a simulation model in TRNSYS was developed based on the Danish solar collector field in 

Braedstrup. A parametric analysis was carried out by modifying the composition of the row, in order to find both the energy and 

economy optimum. 
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1. Introduction 

At the end of 2013 Denmark had already installed around 350,000 square meters of thermal solar collectors in 

solar heating plants in district heating areas, with further 250,000 square meters planned for 2014 [1,2] . In a 

scenario still characterized by a strong growth in the installed solar collector capacity, even relatively small 

improvements may lead to a large increase in the overall energy production in absolute terms. For this reason 
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research and development into the optimization of the collector characteristics and solar field design play key roles. 

Solar collectors in Denmark have seen a significant enhancement in performance in the last years [3] and efforts are 

still being made for further improvement, as new collector models prove [4,5]. Nevertheless, efficient components 

do not always guarantee the best performance possible, unless the overall system is well designed and operated. 

Collectors installed in Danish solar collector fields for district heating applications are usually large flat plate 

collectors, connected in rows having between 10 and 25 modules each [1]. These collectors are either produced by 

ARCON Solar A/S or SUNMARK Solutions A/S, and may have a polymer foil between absorber and glass, 

functioning as a convection barrier to decrease the heat losses (in ARCON collectors only). On the other hand, as the 

polymer foil is not completely transparent, it slightly reduces the solar irradiance reaching the absorber. 

Consequently, if two collectors differ only for the presence of the convection barrier, there is a certain temperature 

below which the model without foil performs better than the other. For this reason, the choice of a collector with 

convection barrier over one without is strongly influenced by the temperature the collector operates at. In large solar 

fields, where the temperature rise within the same row is usually very high (from 40 °C up to 85 °C), both types of 

collectors may be used together to maximize the energy output. Collectors without foil may be used in the first part 

of the row, where the fluid temperature is still relatively low, to provide the first temperature increase. On the other 

hand, collectors with foil may be best exploited in the second part of the string, where higher temperatures are 

reached. Nevertheless, also the higher cost of collectors with foil must be taken into account, to verify whether the 

improved efficiency is worth the extra investment. 

 

Nomenclature 

a1 first order heat loss coefficient, (W m-2 K-1) 

a2 second order heat loss coefficient, (W m-2 K-2) 

b0 first order IAM coefficient, (-) 

b1 second order IAM coefficient, (-) 

FEP fluorinated ethylene propylene 

G total irradiance on the collector plane, (W m-2) 

IAM incidence angle modifier = 1 b0·(1/cos) b·(1/cos)2, (-) 

NPV net present value, (Danish crown, DKK) 

Ta ambient temperature, (°C) 

Tm fluid mean temperature, (°C) 

T*
m reduced temperature difference = (Tm Ta)/G, (K m2 W-1) 

 zero-loss efficiency, (-) 

 efficiency of solar collector =  a1·T
*
m  a2·G·(T*

m)2, (-) 

 incidence angle, (°) 

2. Method 

To carry out the optimization analysis on the collector row composition, a TRNSYS simulation model was 

developed based on the design and control strategy of an actual solar collector field, more specifically the field in 

Braedstrup (Denmark), installed by the Danish company ARCON Solar A/S. Design of the field and 1-year (June 

2013-May 2014) measured data of solar radiation, flow rate and inlet and outlet temperature were kindly made 

available by ARCON Solar and PlanEnergi, and then used as input for the TRNSYS model. 

2.1. Description of the solar collector field 

The solar collector field in Braedstrup was built in 2007, with an overall transparent area of 8,000 m2. An 

extension of 10,608 m2 was added in 2012 and is investigated in the current study. This new solar field consists of 

847 collectors with convection barrier (model HT-SA 28-10), arranged in 72 rows spaced by 5.5 m. Most of the 

collectors (60%) are arranged in 14 module rows, while the remaining 40% is installed in shorter rows (Fig. 1). 
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Fig. 1. Layout of the 10,608 m2 collector field in Braedstrup (source: ARCON Solar A/S). 

The collectors are tilted by 35° and are south oriented. For space reasons, the building containing the heat 

exchanger between solar collector loop and the water loop is shown in the bottom left corner of Fig. 1, relatively 

close to the solar collector field, while it is actually located approximately 500 m away. The field uses a mixture of 

propylene glycol and water with a 30% weight concentration as solar collector fluid. The inlet temperature is about 

40 °C while the outlet temperature is about 90 °C. 

2.2. Description of the TRNSYS model 

One-year measured data (June 2013-May 2014) of total radiation on the collector plane, ambient temperature, 

flow rate through the entire collector field and supply temperature were given to TRNSYS as input, while the outlet 

temperature was used only as basis of comparison to check the correct operation of the model. 

As the purpose of this study is to optimize the composition of a single row, the developed TRNSYS model 

simulates the behaviour of one row only, consisting of 14 collectors, which represents the most common 

configuration in Braedstrup field (Fig. 1). Because only the total field flow rate was measured, the ratio between the 

row flow rate and the field flow rate was assumed equal to the ratio between row area and field collector area, which 

guarantees approximately the same outlet temperature from each row. 

Although the field is made of solar collectors of type HT-SA 28-10, manufactured by ARCON Solar, two other 

ARCON models (HT-A and HT-SA 35-10) were used in this study, as they are similar to the original model and 

more detailed information were available from previous studies [6]. The two HT 35-10 collectors are mostly 

identical in terms of design and technical specifications, with an aperture area of 12.56 m2 and 18 horizontal copper 

tubes connecting two manifolds [7,8]. The only relevant difference between the two collectors is a 0.025 mm thick 

fluorinated ethylene propylene (FEP) foil interposed between the absorber and cover in the model HT-SA (Fig. 2), 

in order to decrease the convection losses. 

The two collectors were tested between 2012 and 2013 [6], according to the standard norm EN 12975-2 and their 

efficiency was calculated for a 45° tilt angle, 25 litres per minute flow rate and using a mixture of water and 

propylene glycol with a 40% weight concentration as solar collector fluid. 
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Fig. 2. Solar collector HT-A (a) and HT-SA (b) at Department of Civil Engineering at Technical University of Denmark. 

As the operating conditions used in Braedstrup plant differ from those used in the efficiency tests in [6], a 

simulation model was created in Soleff, software developed at the Technical University of Denmark [9]. This model 

was first validated against the experimental results from [6], and then used to predict the efficiency parameters for a 

30% glycol/water mixture and 35° tilt angle, which were then used as input for the collector Type 539 in the 

TRNSYS model [10]. The collector parameters given as input to Type 539 are listed in Table 1, while the collector 

efficiency curves are shown in Fig. 3 for a solar irradiance of 800 W m-2. In the diagram it is possible to appreciate 

the effect of the FEP foil on the zero-loss efficiency and convection losses, as described in Section 1. 

Table 1. Collector parameters used as input for the collector Type 539 in the TRNSYS model. 

Collector characteristic HT-A 35-10 HT-SA 35-10 

Zero-loss efficiency , (-) 0.850 0.816 

First order heat loss coefficient a1, (W m-2 K-1) 3.093 2.418 

Second order heat loss coefficient a2, (W m-2 K-2) 0.0111 0.0085 

First order IAM coefficient b0, (-) 0.045 0.070 

Second order IAM coefficient b1, (-) 0.089 0.080 

Collector thermal capacity, (kJ/K) 78.5 78.5 

 

Because the diffuse radiation was not measured in the solar collector field in Braedstrup, Type 546 was used to 

evaluate the diffuse component according to Erbs correlation [11], given the total radiation on the collector plane, 

horizontal extraterrestrial radiation and position of the sun in the sky. Shadow effect from other rows was considered 

by using Type 30a. Given the significant length of the supply pipes (560 m and 474 m for forward and return pipe 

respectively), these were taken into account by Type 604b, which modelled plug flow, thermal losses and pipe 

thermal capacity. 

 

 

Fig. 3. Efficiency of the HT-A and HT-SA collector for a solar irradiance G=800 W m-2. 

a b 
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After verifying the correct operation of the model, this was used to carry out a parametric analysis, varying the 

composition of the row by increasing the number of HT-A collectors. Computing and comparing the useful energy 

outputs in the different cases, it was possible to determine the best row composition from an energy point of view. 

2.3. Economic analysis 

The most efficient solution from an energy point of view may not be the most effective from an economic point 

of view. For this reason a simple economic analysis, based on the Net Present Value (NPV) method, was carried out 

as well. In this way the most cost-effective solution could be identified. 

In order to carry out this analysis, the parameters listed in Table 2 were used. The cost of the solar collectors, 

their maintenance and their lifetime were communicated by ARCON Solar. The costs of the solar collectors include 

also installation and piping. The maintenance cost was said to be the same for both collector models, as no need of 

replacement of the FEP foil is expected during the collector lifetime, and, even if the FEP foil breaks, this is 

replaced by the collector manufacturer at their own expense. The lifetime of 20 years is meant as the period during 

which the collectors are supposed to maintain their original efficiency. This kind of solar collectors are usually kept 

in operation for longer than 20 years, but the same performance is not guaranteed afterwards. 

The interest rate was assumed equal to 6%, as in similar project studies in Denmark [12], and the energy price 

was read from [13] as energy price for the customer without the 25% VAT. 

The collector efficiency, and therefore the yearly energy production, was assumed constant throughout the 

expected lifetime of the solar collector field. Energy losses from the district heating network were neglected. 

Table 2. Parameters used in the economic analysis 

Economic parameter Value 

Turnkey price of a HT-A 35-10 collector, (DKK/m2) 1750 

Turnkey price of a HT-SA 35-10 collector, (DKK/m2) 1850 

Energy price, (DKK/MWh) 574.50 

Maintenance cost, (DKK/MWh) 2.00 

Minimum expected lifetime of the solar collector field, (years)  20 

Interest rate, (%) 6% 

3. Results 

3.1. Comparison between TRNSYS model and measurements 

To check the correct operation of the TRNSYS model, its results were compared against the measured data from 

Braedstrup, both in terms of return temperature from the solar collector field and useful energy delivered to the heat 

exchanger. As in Braedstrup all collectors are equipped with FEP foil, the row configuration used as comparison 

consisted of 14 HT-SA collectors. 

In the considered year (June 2013-May 2014), the energy transferred to the heat exchanger in the TRNSYS 

simulation was approximately 72.8 MWh, only 1.2% higher than the measured one. Nevertheless, on a seasonal 

basis the deviations had higher values and opposite trend. In fact, the periods June-December 2013 and January-May 

2014 were characterized by average deviations of +7% and -8%, weighted on the monthly transferred energy. As the 

flow rate and the inlet temperature used in the TRNSYS model were the measured ones, the difference was caused 

by the different outlet temperature at the end of the return pipe, before the solar collector fluid entered the heat 

exchanger. The comparison between measured and simulated return temperatures is shown in Fig. 4. The outlet 

temperature computed by the model followed the measured temperature profile, despite some deviations for high 

irradiance values. It can be seen how the return temperature calculated by the TRNSYS model was lower than the 

measured one, if data from 2014 were used (Fig. 4.a). On the other hand, the TRNSYS return temperature was 

higher, when data from 2013 were considered (Fig. 4.b). No significant intervention was done on the field in the 

winter 2013-2014, so the abrupt change in the performance of the solar collector field was unexpected. 
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Fig. 4. Comparison between simulated and measured return temperature from the solar collector field: (a) April 20 th and 21st, 2014; (b) July 7th 

and 8th, 2013.  

On the basis of the available information, only some hypothesises could be made. The higher energy output of 

the TRNSYS model in 2013 was most likely due to the fact that the model assumed perfectly uniform flow 

distribution in the different rows, which might not be the case. Additionally, the heat losses from pipes were slightly 

underestimated, as only one collector row was modelled. Finally, pollen and dust on the collector cover or presence 

of moisture on the inner surface of the glass might reduce the actual performance of the collectors in real-world 

operation. Regarding the lower energy output in the first half of 2014, this seemed to be caused by underestimated 

irradiance measured by the silicon pyranometer Soldata 80spc, manufactured by SolData Instruments and installed 

in Braedstrup field. The irradiance measured in Braedstrup was compared to the horizontal irradiance from a DMI 

(Danish Meteorological Institute) climate station in Horsens, 20 km away from the solar collector field, where a 

NovaLynx 8101 Star pyranometer (first class according to ISO 9060) was installed. The comparison was done 

between the days May 29th-30th 2014 and June 2nd-3rd 2013, as they were characterized by clear sky conditions and 

almost identical solar declination. Considering an interval of a couple of hours around midday, the ratio between the 

irradiance in Braedstrup and that in Horsens in late May 2014 was about 7 % lower than the same ratio calculated 

for early June 2013, thus supporting the hypothesis that the silicon pyranometer underestimated the actual solar 

irradiance reaching the solar collector field, maybe because of dirt on the pyranometer cover or due to aging. 

3.2. Useful energy output 

After this comparison, calculations were carried out increasing the number of HT-A collectors placed in the first 

part of the row. Fig. 5 shows the monthly solar radiation reaching a unit area of solar collector during operation of 

the pumps, and the utilization factor of solar radiation for differently composed rows. The utilization factor is 

defined as the ratio between the row useful energy output and the collected radiation defined above. 

For the sake of clarity, not all the utilization factor curves are shown in Fig. 5, as it would be difficult to 

distinguish them, but only those with a relevant difference between each other are displayed. 

On the other hand, results for all the possible row combinations are listed in Table 3 in terms of yearly energy 

output and relative difference with respect to a composition consisting of 14 HT-SA collectors. From the values 

listed in Table 3, it is possible to see that the best performance was achieved by a row consisting of HT-SA 

collectors only. Nevertheless, introducing up to five HT-A collectors in the first part of the row did not significantly 

decrease the energy output, as the relative difference with respect to the row composed by 14 HT-SA collectors was 

lower than 1%. Further replacement of HT-SA collectors with HT-A models increasingly deteriorated the row 

performance, up to a 7% reduction in the case where only HT-A modules were used.  

a b 
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Fig. 5. Monthly utilization factor of solar radiation for different row compositions (left axis) and monthly solar radiation per unit area of collector 

(right axis), using weather data measured at Braedstrup field between June 2013 and May 2014. 

Table 3. Yearly energy output from the collector row and relative difference with respect to a 14 HT-SA composition, using weather data 

measured at Braedstrup field between June 2013 and May 2014. 

Row composition 

HT-A - HT-SA: 

Yearly energy 

output, (MWh) 

Relative 

difference, (%) 

0 - 14 74.0 0% 

1 - 13 74.0 -0.1% 

2 - 12 73.9 -0.1% 

3 - 11 73.8 -0.3% 

4 - 10 73.7 -0.5% 

5 - 9 73.5 -0.7% 

6 - 8 73.2 -1.1% 

7 - 7 72.9 -1.5% 

8 - 6 72.6 -2.0% 

9 - 5 72.2 -2.5% 

10 - 4 71.7 -3.1% 

11 - 3 71.2 -3.9% 

12 - 2 70.5 -4.7% 

13 - 1 69.8 -5.7% 

0 - 14 68.9 -6.9% 

3.3. Economic assessment 

Under the assumptions made in Section 2.3, an investment analysis was carried out and its results are reported 

graphically in Fig. 6, both in terms of net present value of the installation after 20 years and payback time of the 

investment. It can be seen that the net present value of the row had a maximum (approximately 164,000 DKK) for 

the configuration consisting of five HT-A and nine HT-SA collectors. 
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Fig. 6. Net Present Value (NPV) of the row at 20 years (left axis) and payback time of the investment (right axis). 

Row configurations with a number of HT-A collector between two and seven presented very similar net present 

values (relative difference lower than 1%), while for an increasing presence of the HT-A model in the row this value 

decreased to a minimum value of approximately 145,000 DKK (-11.5% with respect to the highest NPV). 

Regarding the payback time of the investment, this was found almost independent of the row configuration and 

with an average value of approximately ten years and a half (maximum value of 10.8 years for a 14 HT-A collector 

row and minimum value of 10.4 years for a 6 HT-A collector row). This value is in good agreement with the 

payback times usually estimated for solar collector fields in Denmark [14]. 

4. Discussion and conclusions 

A TRNSYS model was developed in this study, in order to analyse the performance of differently composed 

solar collector rows, consisting of 14 collectors, both with and without polymer foil as convection barrier. The 

model was built based on measured data from the Danish solar collector field in Braedstrup and using two different 

solar collectors available on the Danish market. 

The results returned by the model were compared to measurements coming from the plant. The model returned a 

value of useful energy output 7% higher than the measured one in the period June-December 2013, and then 8% 

lower in the period January-May 2014. As no significant intervention was done on the field in the winter 2013-2014, 

only some hypothesises about the reason of such a change in performance could be made. The higher energy output 

of the TRNSYS model in 2013 was most likely a consequence of some assumptions made in the model, such as 

uniform flow distribution in the different rows, clean and moisture-free collector cover throughout the year and 

slightly underestimated heat losses from supply and return pipes. The lower energy output in the first half of 2014 

seemed to be caused by underestimated irradiance measured by the silicon pyranometer installed in Braedstrup field. 

Comparison between the irradiance measured in Braedstrup and the horizontal irradiance from a nearby DMI 

climate station supported this hypothesis. The reason for such an underestimation might be accumulated dirt on the 

flat cover of the silicon pyranometer, as this was not regularly cleaned. 

The parametric analysis carried out on the row composition proved that the best performance in terms of yearly 

useful energy output was given by a row consisting of HT-SA modules only (74 MWh), assuming weather 

conditions as those recorded between June 2013 and May 2014. Nevertheless, rows with up to five HT-A collectors, 

installed in the first part of the row, presented very similar energy outputs, less than 1% different (Table 3). 

Although the replacement of HT-SA collectors with HT-A models reduced the performance, the effect was not so 

significant, as the collectors were replaced at the very beginning of the row, where the fluid temperature was not so 

high and hence the difference in efficiency between the two collector models was small. Nevertheless, when 

additional HT-A collectors were introduced, the performance of the row increasingly deteriorated, with a 7% 
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reduction in the case where only HT-A collectors were used. This was in agreement with the expectations, as in this 

case HT-A collectors were used also in a relatively hot part of the row, where thermal losses were more important 

than the transmittance of the cover. 

From Fig. 5 it can be seen that the presence of the FEP foil played a more or less significant role depending on 

the season. Comparing the row with only HT-SA collectors to the case where only HT-A collectors were used, the 

additional gain in the first case was more important in winter months, when the temperature difference between 

collector operating temperature and ambient temperature is larger. In this case convection losses play a significant 

role, which the FEP foil helps reduce. So, the highest deviation occurred in December, with 6 percentage point 

difference in utilization factor of solar radiation, and the lowest in July, with 2 percentage point difference. 

The economic analysis, carried out according to the method of the net present value and in a 20 year lifetime 

scenario, showed that the most cost-effective solution was given by a row consisting of five HT-A and nine HT-SA 

collectors. This is due to the fact that this configuration yielded a yearly energy output slightly lower (-0.7%) than 

the best case scenario, but also required a lower initial investment cost (-2%). The payback time was approximately 

the same in all scenarios, so it could not be used as a significant parameter to identify the best solution. 

Since the solar collectors are expected to last more than 20 years, a longer lifetime could be assumed. In this case, 

the most cost-effective solution in terms of net present value would shift toward row compositions consisting of a 

larger number of HT-SA collectors. In fact, the additional yearly energy production would have a longer timespan to 

pay back the extra investment. Nevertheless, the collector efficiency after 20 year operation is not guaranteed to be 

the same as for brand new collectors, which makes it difficult to make forecast. Information about how the 

efficiency curves of the two different collector change over time are needed, if an analysis in the longer term is 

desired. Additionally, it must be noted that measured data from a specific year (June 2013-May 2014) were used in 

this study. Different yearly weather conditions influence the useful energy output of the solar collector field and thus 

affecting the results of the economic analysis. 
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