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CHAPTER 10

10. Theory of spatial interpolation

Review prepared by: Vito D'Agostino and Gerhard Cz%)lak ﬁecﬁons 10.3.3 to 10.4.5}
Tecnopolis CSATA Noviss Ortus and DWD Meteorologisches
Observatorium Hamburg respectively

Under sponsorship from: Italian National Research Commitlee and Bundesministerium fiir

Forschung und Technologie (BMFT) respectively

The procedure of estimating the values of physical properties at unsampled sites within areas
covered by existing observation networks is called interpolation, while outside the areas it is
called extrapolation (note that in Chap. 3 “"extrapolation” is used with a different meaning). The
value of a variable between data points can be interpolated only by fitting some plausible mode! of
variation to the values at the data points and then calculating the value at the requested location.
The spatial distribution of a variable is often arranged in an array whose elements (or pixels, in
analogy with satellite images) have the following characteristics:

- ground resolution in square meters, i.e., the pixel or element area;
- geographical position (e.g., latitude, longitude, Gauss-Boaga, UTM system, etc.}

In this case the estimation process is also called gridding.

The problem to be solved is one of choosing a model suitable for solar radiation data, taking into
account the sensor's operational characteristics (ground- or satellite-based). In addition to the
approaches, we discuss several aspects which influence the quality of the results:

- spatial representativeness of the network stations. The spatial distribution of network stations
is usually arranged to meet specific needs, within limits imposed by economical constraints. For
example, an agronomical solar radiation network will be organized according o the growth
conditions required for crops and this cannot be optimal for solar energy resource assessment.
Thus, the existing network and the information one tries to extract from it are not always
compatible.

- temporal representativeness of the time series for each station. Several relationships between
the fluctuations of solar radiation and the temporal resolution of the measurements should be
considered. A high temporal resolution can more accurately determine variations produced by
fast drifting clouds. Therefore, it is important to establish the maximum integration time that can
be used without loss of information relevant to the application [10.1].

Principal component transformations (see Section 10.4.2) generate new variables which are
pairwise uncorrelated. The principal components (variables) are linear combinations of the
observed variables, chosen such that they are orthogonal. The first principal component is that
linear combination which has the maximum variance among all linear functions derivable from
the given variables. This condition leads to a unique set of coefficients. The second principal
component is the linear combination having the maximum variance among all linear functions (of
the given variables) that are orthogonal to the first principal component, and so on. If the
measurements present a consistent variability, then we can identify the variable which is a
significant contributor to variability between the individuals;

- operative conditions of the stations. Solar radiation measurements by pyranometers require
homogeneity with respect to the operative conditions and with respect to the local characteristics
of the stations. Standard quality control techniques (e.g., tracing of systematic behavior in time
series) are described in [10.2].




Interpolation method performances are often evaluated with respect to implementation degree,
user friendliness and execution time of the code. These are important factors, but there is much
subjectivity in their weighting. Even when the weighting can be objective (e.g. execution time),
then it refers more to the properties of a compiler and hardware rather than to the algorithm
itself. Therefore, it is more advisable to select accuracy, robusiness (insensitiveness o minor
changes in parameters) and smoothness of the different methods as comparison criteria.

The finite areal extension of pixels forcibly introduces a spatial error due to the assimilation of
the point to the pixel.

In order to test the accuracy of an interpolating surface, it is necessary to have a data sample on
the real surface in order fo use it for, e.g., the jacknife validation technique. Note at this stage
that the report exclusively deals with interpolation, i.e., with surfaces which match the
sustaining data (within measurement errors) at the measurement sites. So-called trend surfaces
(low order polynomial surfaces which are fit by minimizing the sums of squared residuals) are
not considered, because they can be of only marginal interest in the context of this report.

Most interpolation schemes require numerical input from the user as well as a sensitivity
analysis. A reliable scheme must respond to small changes in the inputs with noticeable changes
in the results.

The smoothness measure of a surface Z(x,y} can be defined according to the theory of splines as:

L(2) = J[Z‘(x,y)]sz (first order)
A

L,(2) = J.[Z“(x,y)]sz (second order)
A

Essentially, the first order condition Ly measures the flatness, and the second order condition Lo
the smoothness a surface. Numerical approximations of L are calculated by estimating the slope
of each surface element dA with subsequent averaging of the squared values over the surface A. The
average of the squared differences of the elementary L¢ yields an approximation of La.

10.1 Probabilistic and deterministic approaches

Given the known set of multidimensional coordinates x; = (u;,vj,Wij,...}, i=1,...,n, where the first
two elements uj,vj represent the geographical position, and the sampled value zj(x;) of the solar
radiation field Z(x), the aim of interpolation consists in computing any z, value at any generic
position Xg in the field.

It is possible to classify the interpolation methods as local and global with respect to the data set
management, and as deterministic and stochastic with respect to the mathematical hypothesis. The
first named classification separates the methods that utilize the whole data set in the estimation
process from those which utilize only a data subset.

in the estimation process, the local approach is more flexible because it guarantees the
management of a data set of limited extension. Methods relying on the local approach consider only
the data points in a neighbourhood of xo to estimate zo. The neighbourhood may be composed of a
pre-fixed number of points: three points at a time define a triangulation. Smoothness of the
interpolating surface at the crossing from one sub-domain to another is enforced by imposed
conditions on derivatives. These conditions are external to the estimation process in the sense that




they are given a priori without any relation to the behavior of the data. Surface regularity is
enforced when large triangles result from an unfavorable distribution of the data.

Deterministic or stochastic classification of the approach depends upon the hypothesis applied to
the data model. The deterministic approach utilizes given assumptions on the spatial variability of
the data while the probabilistic approach allows the use of different hypotheses about this
variability. Moreover, the latter hypotheses must be compatible with the distribution of the data.

Examples of deterministic methods of local type are the Shepard and the Akima interpolations.
Shepard's method [10.3 and 10.4], also called gravity interpolation, is based on the weighted
average of those zj which fall in a specified neighbourhood of x5. The weights are evaluated as a
function of the inverse squared distance between xo and x; (see Section 10.2.1). Triangulation is
used in Akima's method [10.5], where quintic polynomial surfaces are fit through the data points
on the triangles' edges. Constraints on derivatives on the triangles' sides are added to ensure
surface continuity and derivability (see Section 10.2.2).

The probabilistic methods are all rooted in the domain of geostatistics. Geostatistics is developed
by using the structural information contained in the spatial data: in this sense it is more flexible,
powerful and general than classical interpolation techniques, which do not take advantage of the
information about spatial variability embedded in the actual data. Geostatistics makes use of
stochastic processes for obtaining the description of the data's structure. Particularly, the
modelling step can be stated as in Table I.

Table I. Relationship between the qualitative spatial behaviour
of a variable and the mathematical hypothesis.

Variable's behaviour Mathematical hypothesis Tools
Regular Weak stationarity Covariance
Less regular Intrinsic Variogram
Irregular Intrinsic of order-k Generalized
covariance

For example, it is demonstrated that the general bivariate spline interpolation is a particular
generalized covariance function model (Dubrule [10.6]). Also within the probabilistic approach,
Gandin's optimal interpolation utilizes the weak stationarity hypothesis (Delfiner [10.7]}.

The generality of geostatistics follows from the manifold of the available models. The cost of this
generality is paid in terms of variogram or generalized covariance determination during the
structural analysis step, which must precede the interpolation itself. Selection of the appropriate
geostatistical interpolation technique depends upon the trend (or drift, i.e., the type of global
variation) in the solar radiation field. Table Il describes the main relationships. A further link is
that Gandin's optimal interpolation is similar to ordinary kriging in the weak stationary
hypothesis.




Table Il Relationship between the trend of the radiation
field and the appropriate geostatistical inter-
polation technique.

Type of trend model Kriging technique
Constant Ordinary
Linear combination Universal

of basic functions

The complexity of the stochastic approach calls for adequate EDP technologies which are not
necessarily required by the deterministic approach. Computer graphics is needed for the
structural analysis step. A menu-driven software is strongly recommended. Parallel processors
should be available for time consuming applications. Ultimately one should expect support by
expert systems.

Most important is the fact that geostatistics provide an estimation variance which is most useful
in assessing the uncertainty of the interpolated data. This variance of estimation is written as a
function of the data values and of their position in the field. Formal introduction of additional
positions therefore allows determination of the optimal location for new stations [10.13].

10.2 Description of the deterministic approaches

10.2.1 Weighted averages

This approach is classified as deterministic of local type. It consists in computing the weighted
average

n
zo=z1:wizi (10.1)
i=

of those measured values z; that are located in the neighborhood of xo ={Ug,vo). Shepard [10.3
and 10.4] suggests weighting functions as

n
W, = [(‘l-Df)z/Dﬁ/;wk for D<1 and w=0 for D>1 (102

with Dj = di/R, where d; is the distance between xp and xj and R is the radius of the sampling
circle. The choice of R depends upon the density of the data points and upon the characteristics of
the topographic relief. The sampling circle should contain at least four to five sample points.
Unfavorable distribution of the xj can call for an increase of the neighborhood's size for obtaining
a sufficient number of zj in some locations xg. This, in turn, may result in an overall increase of
processing lime as well as a loss of accuracy. Even when using equation (10.2) which guarantees
a smooth decrease of the weights towards the periphery of the sampling circle, the resulting
surface can present edges and steep slopes.




In regions without marked orography, dj is set equal to the euclidean horizontal distance.
Otherwise, Zelenka and Lazic [10.8] suggest the use a coefficient for weighting the squared
elevation increments. The latier procedure is a surrogate to statistical interpolation methods,
where the weights are based on {suppesedly known) covariances between pairs of stations.

10.2.2 Akima interpolation

Akima's method consists in determining a bivariate fifth-degree polynomial in x and y over each
of the triangular cells which can be built from the locations (x;y;) of the data. Construction of a
univocal triangulation in the reference plane is achieved by applying the "min-max" criterion of
Lawson (e.g., [10.1]}. Algorithms to produce the triangulation are presetented by Akima [10.5]:
first connect the closest pair of points, then add a point at a time in ascending order of the distance
from the midpoint of the closest pair. Each time a new point is added, a triangle is constructed and
it is guaranteed that the new point lies outside the polygon constructed with the old points.

Interpolation in a triangle relies on the following assumptions and facts:

i) z(x,y} is a quintic polynomial surface, viz.:
5 5 .
2(x,y) = ;k LR (103)
j=0 k=

where 21 coefficients are to be determined.

ii) The values of the function, as well as its first and second partial derivatives, can be
evaluated at each vertex of the triangle. This gives three times six conditions.

iii) The partial derivatives of the function differentiated in the direction normal to each side of
the triangle are polynomials of degree three {at most) of the distance from the side. As, purely
mathematically, these would be polynomials of degree four, this assumption adds one condition
per side.

Both (i) and (ii} produce 21 equations for the gk and they also ensure the smoothness of the
interpolated values. The smoothness of the resulting surface along the sides of the triangle can be
proven by considering another cartesian coordinate system. The transformation between the x,y
and the new system is linear, so that the partial derivatives are uniquely determined at each
vertex as linear combinations of the former derivatives.

Besides the "flultering” of this surface on the convex hull of the data points (see Sect. 3.2 in
Volume 1), the main drawback of Akima's method is that it has no flexibility at all. The surface is
unique for a given distribution of z. It appears advantageous only if applied in the local mode: then
it is possible to modify the surface interactively while varying the size of the local data.

10.3 Description of the probabilistic approaches

10.3.1 Gandin's optimum interpolation

Gandin explained the method in terms of probabilistic hypotheses and, thus, it represents an
excellent introduction to the geostatistical approach. It considers the (solar radiation) field as a
random function Z(x) sampled at xj = {uj,vj} locations where zjis a value of the random variable

Z{xj) for i=1,...,n.




Gandin developed the theory for the dispersion values Yj = z; - E[Z;] (E[Z] is the expected value of
Z; we recall that the E of a discrete random variable is its mean). Let zg be the unknown field

value at xg:

Lo = E[Zo] + Yo (1 04)

Estimation of the Y, dispersion, Yo', is performed by linear combination of the dispersion values
Yi (assuming E[Z(x)]=0):

n
Y, = Z, BY, (10.5)
=
The weights B; are evaluated by minimizing the average error
2 *\2
80 = E[(Yo ) Yo) (10.6)
or
la] n N
2
s2=E[Y"- 221: BY,Y + D BRYY,) (10.7)
1= =1 =

which is equal to

n n n
B=c - ZiZ:,Bioio + ;;Biﬁjqj (10.8)

where oj = E[Y;Y|] is the covariance between Z; and Z;.
] J ]

Partial derivatives of (10.8) with respect to B are set to zero to give the minimum §o2. This
yields the following system of n equations

n
Z Bj =0, for i=1,...,n (10.9)
j=1

which has a unique solution. The coefficients ojj of the system are evaluated experimentally from
the data, but ojp is unknown. Thus, it is necessary to fit a positive definite function of distance
through the oj; and to use this function to get ojo.

When the B; verify (10.9), then 852 is minimum and its value becomes

n
2
8y = O ~ Z_Iﬁl Cio {10.10)
=

When E[Yo - Yo'] = 0 (unbiased condition), then the Yo" estimator (10.5) is exact and 8§02
represents the variance of the estimation error on Yy.




When E[Z(x)] is different from zero, Gandin assumes that it is constant (E[Z(x}]=C) in the
neighborhood of x5. Then

ZL:anBizi (10.11)
i=1
and
iBEZﬁZBi{E[Zi“YiFCZ;Bi 2 LB, (10.12)
i=1 I= i= =

from which the estimation error becomes

n n

ZO-Z;=C(1-Z1[3i)+(YO-ZBiYi) (10.13)
i1

This error doesn't depend upon C if

=

B = 1 (10.14)
i=1
is fulfilled.

For minimizing (10.13) it is necessary to introduce the classical Lagrange factor p, which leads
to the (n+1) times (n+1) system of linear equations

n n
Z Bj C; = O, + i for i=1,...,n; Z B =1 (10.15)
j= i=

and, as above, when the Bj satisfy (10.15), the minimum variance of estimation becomes

n

2
8 = Opo - Z‘B‘ O +H (10.16)
I=

10.3.2 Geostatistics

Geostatistics can be defined as a set of statistical tools applicable to the study of phenomena
varying in space and time. The basic idea is to use both the spatial continuity of the data, which is
a reflection of the large scale behavior of the underlying process, and the erratic variations at
each point in the field. Modelling by means of the concept of random functions and by means of
hypotheses on their probability distributions permits the description of both the structured and
the erratic effects of the field, and it further allows the analyst to put physical interpretations
info the model.




The probability distributions are inferred from the data by means of structural analysis which
is, in turn, based on variogram modelling. Thus, the analyst is forced to make decisions that are
consistent with the data. The behavior of a theoretical variogram is as follows: the closer two
sample points are to each other, the less the field {in our case the insolation) should vary. In
practice, many factors can modify this behavior. Sometimes it is possible to decompose the spatial
structure along specific directions (identified by an angle with respect to the longitudinal axis,
plus or minus a tolerance angle) along which the expected structure can be revealed. Then the
increment of the variable is computed for each direction and for each pair of sample data. Use of a
distance interval (LAG) allows computation of means of the squared increments within their
respective LAGs. A statistically meaningful number of pairs is needed in each LAG, but especially
for the first LAG, i.e., for the one closest to zero interdistance h. The graph in which the mean
increments are plotted as a function of the LAGs represents the experimental variogram in that
direction. A model consisting of positive definite forms must then be fit to the experimental
variogram. Such a model is characterized by a SILL (maximum sample variance) and by a RANGE
(maximum distance h within which pairs of points interact).

Anisotropic behavior of the variable is indicated when more than one variogram model has been
identified for the different directions. The anisotropy should be removed when possible. In the
most favorable situation, one model is indicated with different SILLs and {or} RANGEs. The
structural analysis is fully employed in the subsequeni, interpolation step.

However, prior to interpolation, cross validation with of all the selected variogram models ought
be perfermed, so to select the one which is the most consistent with the available data. Two tests
are used to make the selection: the first measures the absence of bias in the estimate (that is,
neither under- nor over-estimation), the second makes a comparison of the drifts between pairs
with known values and the drifts of the variances of estimation.

interpolation based on the selected variogram model reconstructs the value of the given variable
in each point of the field. The general technique can be subdivided into various kriging techniques
which work as linear estimators of the random function. They are free of bias and have minimum
variance.

10.3.2.1 Modelling

We consider the solar radiation field Z(x) varying in the area A: { Z(x), x € A}. The
probabilistic approach consists of randomizing this set and of interpreting it as a realization of a
set of dependent random variables Z(x) for x e A. A model able to describe such an interpretation
is called a random function (RF)} and the associated variables are called regionalized variables.
The characterization of the random function Z(x} is determined by means of its distribution laws
(i.e., by its moments), whose identification requires some regularity hypotheses in order to
reduce the number of required parameters.

These hypotheses can be written in increasing order of generality for Z(x):
a) Stationarity of order two: which requires the existence of the first and second moments:
E[Z(x)] = m{x)
E[Z{x)Z(x+h)] = o(x,x+h) + m{xXIm(x+h)
with o(x,x+h) being the covariance between Z(x} and Z(x+h) and m(x) being the mean of Z{(x).
When the RF Z(x) exhibits a constant mean over the whole field and when the covariance between
Z{x) and Z(x+h) depends only on h, then we can say that Z(x) has stationarity of order two:
E[Z(x)] = m

o(x,x+h} = o(h)




b) Intrinsic hypothesis: for phenomena without limited dispersion, thus without covariance, it is
necessary to consider the increments of the RF rather than the RF itself,

E[Z(x) - Z(x+h)] = m(x) - m(x+h)
var[Z(x) - Z(x+h)] = 2 v(x,x+h)

with Var used to denote the variance. The function y(x,x+h) is called a variogram and it plays a
central role in geostatistics. The existence of covariance implies the existence of the variogram
while the reverse is not true. When the variogram depends only on h we say that Z(x) is
intrinsic:

(1/2)Var[Z(x) - Z(x+h)] = y(h)

¢} Intrinsic_hypothesis of order-k: for phenomena with conspicuous irregular behavior we can
use a generalization of the intrinsic hypothesis concerning the increments of Z(x). Matheron
[10.9] describes the theory of intrinsic random functions of order-k (IRF-k) as it proceeds
from the intrinsic hypothesis.

710.3.2.2 Structural analysis

The variogram y of an intrinsic random function is by definition the mean square value of the
differences Z(x+h}-Z(x} and it depends only on the h vector in a k-dimensional field. Thus, v is
a function of the modulus |hj of h and of the polar angle o between h and the longitudinal axis:

y(h) = y(Ih, o)

For a fixed o the graph of y(h) reveals the directional features of the structure. The aim of the
analyst is to implement a strategy for recognizing a structure in the sample that can be modelled
with a theoretical variogram. The expected properties of a variogram - which directly proceed
from ils definition - are:

- if measurements are taken at arbitrarily close points x and x+h, the mean squared differences
of Z{x+h)-Z(x) tend towards zero;

- the closer x+h is to x, the smaller is the squared increment of the variable;

- beyond a certain range of inter-distances the squared increments of the variable stabilize
around a value comparable with the variance of the whole sample.

Variogram models have to satisfy certain conditions of mathematical consistency with the squared
averages, without which one could possibly come up with negative variances. Thus the choice of
the models is among the conditionally positive definite functions that ensure a positive variance.
The variogram parameters are essentially three: The RANGE a, the SILL C, and the NUGGET
EFFECT N. The current models are:
1) The power model (Fig.1)

yhy=N+Q hP with 0<B<2

The linear model (B = 1) is the specific case that simply states that the variance of the
increments is proportional to the distance between two locations in the field.

2) The spherical model (Fig.2)

y(h) = N + C[(3/2)|hl/a - (1/2)|h|3/a3] Ih| < a
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Fig. 4: The Gaussian variogram model (full line).
Scales are in arbitrary units.
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The tangent at the origin permits an assessment of the difference between the linear and spherical
models. The spherical model gives more weight to distant points, i.e., it implies a more continuous
behavior of the field.

3) The exponential model (Fig.3)
v(h) = N + C [ 1 - exp(-]h|/a)] lh| < a

The abscissa where the tangent at the origin interects the SILL C is smaller than in the spherical
model (1/3 of a versus 2/3 of a).

4) The Gaussian model (Fig.4)
v{h) = N + C [ 1 - exp(-]h|?/a2 ] h| < a

This model is characteristic of an extremely continuous and smoothly differentiable phenomenon.

As presented here, the models have y(h) = C for |h| > a, and a nugget effect N equal to zero. The
nugget effect is to be understood as a discontinuity of the variogram at the origin. Generally a
nugget effect different from zero is due to one of the following causes:

i) to a component of the phenomenon whose range is smaller than the smallest interval for
which the experimental variogram can be computed;

ii) to measurement uncertainties;
iii) to location errors of sample points.

In many cases, physical ancillary information is more useful than short-distance sampling for
assigning the right cause, because there is always a minimum inter-distance below which the
variogram is simply not known. In fact, an analysis at shorter distances may reveal that the
variogram continuously dips to zero and that an apparent discontinuity is merely due to the
spacing of the sample points, which is too wide to detect structures at a smaller scale.
Alternatively, the first observable variogram point may be aligned with the origin although the
variogram has a bend and a nugget effect. Such a behavior is typical of location errors. Qbviously
there is a risk to be wrong in both cases. Therefore, the best hypothesis about the variogram may
proceed from physical information about the variable, if such are available. Often, the variance of
measurement errors is known from separate experiments and it may account for a part of the
nugget effect. In other cases, we know that the variable is continuous and model the apparent
nugget effect by a spherical variogram with a range smaller than the shortest observed lag.
Practice, however, shows that computational robustness is gained when highly continuous models
are used with a very small nugget effect.

In the proposed models 1 to 4, the different shapes also describe different decay rates of the
influence between the field points as a function of their mutual spacing. When the variogram
reaches the sill, it means that there is a distance (range) beyond which Z(x) and Z(x+h) are
without correlation and the sill itself becomes the variance of the whole sample:

y(h) = (1/2)Var[Z(x+h)-Z(x)] = (1/2)[Var(Z(x+h))+Var(Z(x))] = (262)/2 = 62 (10.17)

If the sample variance o exists for h=0 (and if it is finite}, then the following holds:
y(h) = C(0) - C(h) (10.18)

where G(h) is the covariance function of Z(x).
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The variogram model is fit to an experimental variogram (open circles in Figs. 1 to 4) which is
computed from the data by taking

2

n(h
i [ Z(x, +h)-Z(x) ]
- k=1

¥(h) = Zn(h) (10.19)

where n{h) is the number of squared increments belonging to each distance class (LAG). Figure 5
illustrates the construction of the experimental variogram according to (10.19).

ALY , .

. (z-2)]2
) n(h) @ - z, 2
* Z 2n(h)

| |
1Lag 2lag l3Lag N I .......... ]

Fig. 5: Construction of the experimental variogram.
In other words, an experimental variogram is the ordered set of values (h, y*(h)) which can be
presented as a graph of y* against h.
By definition of the average squared increments we have:
E[Z(x+h)-Z(X)]2 = Var[Z(x+h)-Z2(x)] + ({E[Z(x+h)-Z(x)]}? (10.20)
and it follows that

y(h) = (1/2)E[Z(x+h)-Z(x)]2 =y(h) + (1/2)[m(x+h}-m(x)]2 (10.21)
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Because in each x we have a random variable, it follows that m(x) is the mean of the random
function Z(x): m(x} is also called trend or drift of the field. y*(h) coincides with vy(h} if, and
only if the increments have zero mean or, equivalently, if m(x) is constant over the field. When a
trend exists, y*(h) is always an upward biased estimator of the variogram.

If there is a trend in the sample the experimental variogram doesn't reach a sill. Consider a
linear trend in, for simplicity, a one dimensional field:

m(x+h)-m(x} = [a{x+h)+b]-[ax+b] = ah (10.22)

from which it follows that
v*(h} = y(h) + a2h2/2 {(10.23)
A parabolic term is added to the variogram. It doesn't produce effects for short distances, but for
long ones it becomes the dominant term (Fig.6). The effect of a trend other than linear, as well as

extension to more than one dimension, is more complex although the same conclusions are
reached.

parabolic term

X

-al—— linear variogram

//

-

Figure 6: Linear variogram and linear variogram plus parabolic term.

10.3.2.3 Performing the structural analysis

In this section the reader should keep in mind that kriging is a method that needs support by an
interactive software package. Several such packages are discussed in Section 10.5.

In a preliminary step, exploratory data analysis should visualize the spatial distribution of the
sample and deliver information on:

- the minimum sample distance (which governs the definition of the LAG in the
experimental variogram);

- the mean and the variance of the sample (which governs the choice of the SILL in the
experimental variogram);

- the presence or absence of spatial trends (which ought to be revealed by the
experimental variogram);

- the normality of the distribution of the population.
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The goal of the structural analysis is the detection of the theorstical behavior to be expected from
the variogram. The strategy is aimed at modelling the corresponding behavior and embedding it in
the estimation process. Thus, the strategy tends to establish some rules which minimize the
arbitrariness of the analysis, even though the subjectivity of the process cannot be avoided
completely. The rules consist of the following steps:

s1: at first, an isotropic behavior of the phenomenon is assumed: all pairs of points within a
tolerance angle +90° with respect to the direction 0° are considered;

s2: a LAG size is chosen slightly [arger than the minimum sample distance;
s3: the experimental variogram is computed;

s4: the first three LAGS are analyzed according to the following criterion. The first LAG must
contain a statistically meaningful number of points (pairs of stations) - see Fig. 5. If this is not
the case, the size of the LAG must be increased and step s3 is repeated. When the first LAG behaves
correctly, then the same analysis is perfomed for the second LAG and afterwards for the third one;

s5: the experimental variogram is examined to determine if its behavior can match one of the
theoretical models. One expects a growth of the values in the first LAGs and a settlement of the
values for the subsequent LAGs. The growth can occur with:

- a parabolic shape which reflects a highly continuous and differentiable field;

- a linear shape which reflects a continuous but less regular field;

- a discontinuily at zero which is termed nugget effect: the field is discontinuous and
highly irregular. Here, continuity is to be understood in the mean square sense.

Selection of the slope at the origin and deciding about the inclusion of a nugget effect are usually
performed while choosing the variogram model yielding the best fit. The RANGE is assessed
visually and the SILL is placed where the variogram stabilizes. This SILL should be roughly equal
to the overall variance of the data if the RANGE is smaller than the size of the region being studied.
The fitting is done by trial and error, preferably using an interactive visual display. Very often,
estimates of the variogram behave poorly and are difficult to interpret. in addition, the same
points are used both to estimate the variogram and to run the kriging procedure (interpolation).
To minimize the effects of correlation and bias, standard models are fit by eye to the experimental
points; least squares fitting is not recommended.

As already stated, the absence of a SILL in the experimental variogram indicates the presence of
spatial trends in the sample. When the SILL exists, it should lie at about the value of the variance
of the population (Equ. (10.17}). If the distribution of the experimental points obviously
contradicts this expectation, it is recommended (as a first step) to increase the size of the LAG
and to go back to 3. However, the LAG size later influences the resolution associated to the map of
the field (whose establishement is the ultimate goal of the whole procedurel). The mapping scale
must be larger than the LAG size of the structural analysis; otherwise difficulties arise with the
correct reproduction of extreme values. Therefore, the step back to s3 is not always possible.
Also, it may not lead to the expected result. So it is a matter of judgement when to abandon the
isotropic assumption and to face one or several of the following conclusions:

- a more refined sampling is necessary (if possible);

- it is necessary to find and express a functional relationship between the given variable and
some other variable dependent on it. The missing information can then be supplied by the latter
variable;

- perform an anisotropic analysis (if possible);

- the field reflects pure randomness; this is the limiting case of total absence of structure and it
is equivalent to the assumption of randomly distributed measurement errors in the deterministic
approach.
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Among these conclusions, the third one, i.e. anisotropy, can be addressed in a straightforward
manner. Only squared deviations of pairs which have a definite orientation (within a reasonable
tolerance angle), e.g. North-South or East-West, are considered and the study is repeated from
step s2 for each direction.

Departures from isotropy are classified into two categories: elliptic or geometrical anisotropy,
which may be corrected by an affine coordinates transformation, and stratified anisotropy, which
is more complex to deal with.

The RANGE now, of course, depends on the direction and there can be several RANGEs reflecting
different scales of structures. In Fig. 7 the variograms have the same SILL in two directions, but
different RANGEs a1 and ap. In Fig. 8 the variograms are linear, but they have different slopes.

v A

direction 2
\

|
\ dirdction 1

distance

Figure 7: Variograms with same sill but different ranges in two different directions.

v}

direction 2
\
\

\
direction 1

distance

Figure 8: Linear variograms with different slopes in two different directions.
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When the anisotropy can be traced to only two main directions that are perpendicular one to the

other and when, moreover, these directions are coincident with the 0° and 90° axes, then the
ratio
k=a1/as

permits the restoration of isotropy. When the main directions do not coincide with the coordinate
axes, the formulae get a little more complicated since they involve the angle @ between the x-axis
and the main anisotropy axis Ox' (Fig. 9). The anisotropy corrected variogram y(h) is of the
form

y(h) = v1 { ¥ (W'Ah) )
where the transformation
h'Ah = [(X1 - X2)cos®+(y1 - y2)sin®]2 + k2 [(yy - yo)cos®d - (x{ - x2)sind]2

allows the description of the variability between pairs (x1,y{) and (xp,y2) in the x,y system
with a unique formula. This is the elliptic anisotropy.

direction 2
Y A
\ direction 1
ao
P

-

Figure 9: Main structure directions in the elliptic anisotropy.

Other anisotropies may be considered as a linear combination of variograms, one for each
direction of anisotropy

¥(h) = Z yi(h)

For example, in 3-D space the vertical direction often plays a select role: there are more vari-
ations across the strata than within them. The variogram is then split into two terms, the one
being possibly isotropic, the other depending only on depth,

[n general a reasonably good fit can be obtained with the sum of two or, at most, three basic
variogram models. Anisotropies are the greatest source of difficulty in structural analysis and it
may be difficult to distinguish between drift and anisotropy.

10.3.2.4 Kriging techniques

Current kriging techniques rely on linear estimators of the random function Z(x)
Z2*(x) = Z Bj Zj (10.24)
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Kriging techniques determine the weights B; in a stochastic way. (In the deterministic approach -
for the formal similarities refer to Section 10.2.1 - the weights are pre-determined in terms of
a, not necessarily euclidean, distance measure).

Kriging is the name given to a group of minimum-error-variance algorithms (Best Llnear
Unbiased Estimators (BLUE)) which produce unique solutions since the matrix of the coefficients
depends on positive definite variogram models. The properties of the techniques can be listed as
follows:

1} Existence and uniqueness of the solution is ensured;

2} The variance attached to the estimator is smaller than any other;

3) The kriging estimator is unbiased;

4) The kriging estimator is an exact interpolator (in the absence of a nugget effect due to

measurement uncertainties, it honors the data points);

5) Kriging takes into account:
- the structural distance of the information (the closer the sample point to the location
being estimated, the greater the weight it should receive),
- the configuration of the data (clustered, redundant data receive less weight),
- structural features (continuity) captured with the selected variogram model v(h).

As already stated above (Sections 10.1 and 10.4.1) the understanding of a pattern of spatial
dependence between n sample points requires a model. These models are reviewed below.

A) Ordinary kriging

In the absence of a trend, E[Z(x)] is constant and a formalism develops which is similar to
Gandin's. However increments are considered instead of residuals, that is, the intrinsic
hypothesis is accepted. Then Var[Z(x+h)-Z(x)] = 2y(h}, resp. Var[Z(x)-Z(x})] = 2y(hij).

Again, let Zo be the unknown field value at xp. Lack of bias requires

E[Zo - Z5*] = 0 (10.25)
from which it follows that
il
ZBi =1 (10.26)
i=1

Further, we require the estimator to be "best" in the sense that the estimation variance is
minimum. In other words, we wish to determine the weights of Zy* such that

o’ =E{Z -Z]} = minimum (10.27)

under the constraint (10.26). It is readily shown that the estimation variance o2 is

o = 2; B Yoi - ZZ BBy (10.28)

i=1 j=1

so, by Lagrange formalism, it is possible to write the following system
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Q) = o + 2u(Z, B-1) =min  and D B=1

Setting the partial derivatives of Q to zero we obtain the OK (Ordinary Kriging) system of n+1
equations for the n+1 unknowns Bj plus p:

I N
21: By +n=1, fori=l..n  and 21 B=1 (10.29)
j= j=

While the yjj can be computed from the data, the voi need the variogram model to be evaluated. The
weights Bj which satisfy (10.29) yield the variance of estimation

n
2
Omin = Z Bi Yoi "M (10.30)
=

B) Universal kriging

For modelling a non-constant E[Z{x}] Matheron [10.10] suggests linear combinations of basic
functions fk(x) (usually k<3)

!

E[Z] = mx) = X, a1, (10.31)

k=0

Howevaer, this drift cannot be validated within the data range because of the insensitivity of the
coefficients of the basic functions. The non-stationary model (drift plus residuals)

Z(x) = m(x) + Y(x) (10.32)

has the variogram

2y(h) = [M(x+h) + m{x)]2 + 2ya(h) (10.33)

and it is obvious that the whole estimation procedure relies on the knowledge of the variogram of
the residuals yr(h). If one is fortunate enough, the sample will coniain some area where, for
some direction (and limited values of h), the trend might be negligible. Then yg{h) = y(h} will
follow from the structure analysis of this region. Otherwise a tedious, and perhaps unstable,
iteration process must be undertaken: various estimates of (10.31) will be substracted from
(10.32} until the next y{h) will no longer markedly differ from the previous one. This last
variogram will be assumed as being yr(h).

The BLU conditions then give the following UK (Universal Kriging) system of linear equations:
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n |
Z Bj YRi +;} My fk = Ygjo  fori=ti..n
= =

n
f
ka = fﬁ for k=0,...,!
I=

where fki represent the values of the f at the locations x;. The order of the UK system is (n+l+1)
times (n+{+1) and the pk are Lagrange multipliers associated to the m({x) condition (the last I+1
equations of the system). The UK system provides a unique solution when the basic functions fik
are linearly independent of the set of data, that is, when

(10.34)

D 6 =0 (10.35)

which implies that cx = 0 for each k=0 to |. The variance of estimation then becomes

n |
2 0
S =YRoo - _Z:Bi YRio kz;uk f (10.36)
= =

Note that if 1=0, then m(x} = ap while fg(x) = 1 by convention, and the UK system reduces to the
OK system (stationary case).

Finally it ought be pointed out that UK, despite its name, is the least "universal" of all the kriging
algorithms, because it is the most constrained.

C) IRF-k kriging and Cokriging

Additional kriging techniques are: IRF-k kriging, cokriging and disjunctive kriging.

Disjunctive kriging introduces non-linear estimators which are beyond the scope of this report.
it is mentioned here because the interested reader will find it referenced in the literature. For
the same reason, we note an entire field of geostatistics, namely simulation: knowledge about its
distribution functions permits the simulation of additional realizations of a RF Z{x) [10.12].

The other techniques metioned above deserve more description as they have been applied in the
course of our validation work.

IRF-k (Intrinsic Random Function of order k) kriging has the advantage of automatic recognition
of the spatial structure (see Section 3.4 in Volume 1). It is applicable when the intrinsic
hypothesis of order k holds and it filters out any underlying polynomial trend [10.11]. However,
it requires samples of sufficient size for the structure recognition to be operative. The structural
tools are termed generalized covariance functions K(h), and among these a great deal of attention
has been devoted to polynomial forms. It is demonstrated that the spline interpolation is
equivalent to IRF-k kriging with the generalized covariance

K(h) = |hi2 In(|h])

a fact which confirms the generality of the geostatistical approach.
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Cokriging relies on the concept of coregionalization, which simultaneously uses two (or even
more) correlated random functions in such a way, that the spatial information contained in each
of them is of particular utility to the estimation process.

Journel [10.12] notes the convenience of this approach in the case when one of the random
functions of primary interest has been undersampled with respect to an auxiliary RF.
Theoretically this is justified, because the cokriging variance is shown to be less than the mere
kriging variance, and this means that the estimation process becomes more accurate. Further, the
spatial information of the better sampled, auxiliary variable is transferred to the primary one
through the cross-variogram function. However, this implies a significant number of locations
where both variables are sampled. Matheron [10.11] discusses the theoretical fundamentals of
the coregionalization. We develop here only some aspecis of the equations.

We assume that Z1 and Zz are two variables modelled through the RF concepts. Stationarity of
first and second order is postulated for the increments of the functions (intrinsic hypothesis),
which allows simplification of the probability distributions of Z{ and Z2. In this case, we call
variogram {y1, resp, y2) the expectation of the squared increments of Z4, resp. Z2, and cross-
variogram y12 (which is equal to y21) the expectation of the increment products between Z4 and
Zo,

If Zy and Zo are physically correlated and if the sample values {Z{x11)},...Z(x1pn}} and
{Z(x21),....Z(xom)}, with m < n exist, then, it is possible to define an estimator of Z1 as a linear
combination of the available sample values provided that X1k = xok fork < m:

n m
Z.(x) = Z, BZ, + Z, 02, (10.37)
I= I=

where Z1j = Z1{(x1j} and Zpj = Zp(x2j).

The weights Bj and «j are again determined by requiring that Z1" be the best unbiased (BU)
estimator of Z4. This technique differs from mere kriging because the estimator also takes the Zp
values into account. As a consequence, the cokriging (coK)-system is complicated by the indexes
which increase according to the number of varigbles involved in the estimation.

As derived from the "Best" condition (minimum variance), the coK-system contains | rows (for
I=1,..,n)

n m
Z By 1y xg - %) + Z« 0 YyplXg = X)) 4 B = ¥, (Xg = X))
I= =
and J rows (for J=1,...,m)
n m
Z B ar (Xqi- %)) + Z 0 YolXgy = Xy + By =7, (Xg = X))
i=1 =1

(where pnq and pp are the usual Lagrange factors), while the "zero bias" condition further adds
the equations
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By solving the coK-system we obtain the estimate (10.37) and the cokriging variance cggk in the
%o location

m
o Yy 2(’(2] -X,) (10.38)
j=1

n
2
Ok = Myt 21!31 T (X5 %) +
i=

If Z1 is correlated to Z2 then ogok is generally less than the ordinary kriging variance: the
additional term involving yi2 allows more flexibility in minimizing (10.38).

For an interval around a given distance h, and, if appropriate, for each direction class, an
experimental cross-variogram is estimated from the sample data using the equation:

n(h
g [Z, (% +h) - Z, (X NZ,(x,+N) - Z,(x)]
¥, (h) =— 2n(0) (10.39)

with n{h) being the number of pairs having a distance within the designated lag. If Z1 = Zo for
any x, then yi2* becomes the experimental (auto-)variogram vyi* {(or y2*) (see Eq. (10.19)).

The experimental cross-variogram vio2*(h} follows from those locations where values of both Z4
and Zo are sampled. An authorized model {e.g., linear, spherical, exponential, gaussian, efc.)
must be fit to it either visually, or by some other good procedure. This model can be validated by
the jacknife technique.

For the (auto-)variograms yi and yo, the allowed theoretical models ensure conditions of
mathematical consistency without which one would possibly come up with negative variances.
Similarly, for a cross-variogram, the Cauchy-Schwarz relation

fr12(B) < ~Ny1(h)yz(h)]

must be fulfilled for all h=0 to ensure a positive cokriging variance in all circumstances.
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10.3.3 Principal Components Analysis
10.3.3.1 Introduction

The principal components analysis, often called the method of empirical orthogonal functions
(EOF}, is a pure statistical method to evaluate scalar quantities. It is free from any deterministic
assumption and independent from the application in which it might be involved. The EOF method is
mainly confined to the evaluation of eigenvalues and eigenvectors of symmetric matrices. Because
of the extensive computations required, it cannot be used without computers.

More detailed and more mathematical descriptions have been presented elsewhere by Lorenz
[10.3.1], Obukhov [10.3.2], Erdmann & Fechner [10.3.3], Fechner [10.3.4], and Fechner
[10.3.5]. In the present case, we have put our emphasis on practical applications of this method
by giving a concrete example.

10.3.3.2 Motivation and Initial Data

In our case, the initial data consist of a matrix made up of values of a single variable (global
irradiation) taken at different locations over a specified period of time. Because measured data
like these are correlated with each other, we had a surplus of information. Uncorrelated or
independent data are orthogonal in the mathematical sense. Therefore, a transformation must be
performed to convert the measured data with its redundant information into uncorrelated
orthogonal variables. This greately reduces the amount of data and leads to independent variables
which can explain the measured data.

To say it in other words: a certain physical variable is examined which is influenced by other
variables which are not known. The initial matrix of measured data, which are correlated with
each other, contains those influencing variables implicitly, so that the redundance of information
makes it impossible to evaluate these influencing variables independently. The transformation of
the measured data matrix into a so-called correlation matrix (which is also the covariance
matrix because of the normalization) reduces the redundant data to those variables which are
independent and orthogonal.

The method presented has its origin in works by Stidd [10.3.6] and Granger [10.3.7].

10.3.3.3 The Covariance Matrix

The measured data matrix Ajj consists of i rows (stations) and j columns (dates). The covariance
matrix Kijj is calculated (see [10.3.1] and [10.3.3]) as follows

N
1
Kij N z fu fnj (1

n=1

with N = number of stations where the columns (dates) are multiplied and then the rows are
summed. The rectangular measured data matrix Ajj becomes a square covariance matrix Kjj of j x
j elements where the diagonal elements Kjj are proportional to the spatial variance.

10.3.3.4 Calculating the EOFs
From this covariance matrix the eigenvalues and eigenvectors (orthogonal functions) are

calculated, by either using Jacobi's method [10.3.8] or by using the Fortran subroutine FO2ABF
from the computer subroutine library NAG-Lib [10.3.9] in one's own computer program.

24




The output of the eigenvalues and the respective eigenvectors are arranged in declining order of
magnitude. The eigenvectors make up an eigenvector matrix E.

The eigenvalues are summed. The contribution of one eigenvalue on the total sum expressed as
percentage is identical to the contibution of the respective eigenvector on the total variance. In the
present case the first four eigenvectors explain 98 % of the total variance. This shows that
arranging eigenvalues and eigenvectors in a declining order of magnitude places them them in
their order of importance.

Lorenz [10.3.1] proved that empirical orthogonal functions are the best among all linear
functions that can be derived from measured data, because they explain the largest part of the
total variance.

This is the reason one can limit the following calculations to the most important eigenvalues
without losing essential information.

10.3.3.5 The Multipliers

Achieving a country-wide mapping of a meteorological quantity requires a matrix M of mul-
tipliers. The idea of multipliers stems from Stidd [10.3.6] and is defined as

M=E A (2)

were E' is the transpose of E. As the first 4 columns of E explain 99 % of the total variance, in
equation (2) only the first 4 rows of E' are used making M a {4 x N)-matrix. For each of the N
stations it contains the first 4 (most important) multipliers.

These multipliers are only exact at the station locations where the data were taken. To get
multipliers for locations between the stations, each of these 4 multipliers has to be interpolated
separately over a digital terrain map. At each grid-point of the map, a surch radius R of a certain
length is described. The values of all multipliers of stations with a smaller distance to the grid
point than R are weighted by the inverse square distance, and an average value is calculated at that
grid point. This procedure yields one single map for each multiplier in M (4 maps in the present
case).

10.3.3.6  Mapping

To calculate a quantity (global irradiation in our case) from a matrix M, equation (2) is
multiplied by E on the left-hand side

EE A=E M (3)

From the orthogonality condition, the transpose of an orthogonal matrix is identical to its inverse
(E' = E-1), and equation (3) becomes

EETA=EM
A=EM (4)

According to (4) the "measured data matrix" A is made up of two parts. One part is only time-
dependent, the rows of the eigenvector matrix E represent the months in a year, and the other
part, the multiplier matrix M, is only space-dependent.

Matrix A in equation (4} is not identical to the initial (measured data) Matrix A in equation (2},
because when calculating A in {4), only the first 4 (most important) columns of E and the first 4
rows of M were used.
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To obtain values for the variable of interest for the entire digital terrain map, one has to
multiply the 4 eigenveciors in E with the value of the multiplier at the same grid point of the 4
corresponding multiplier maps. The sum of these 4 products is the final value of the variable at
one peint. Repeating this procedure yields the entire map.
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10.4 Cluster analysis
10.4.1 Introduction

Cluster analysis is a method of classification generally used in the fields of biology, medicine,
climatology etc.. It arranges n items, each of which is distinguished by different characteristics
(variables), in classes or clusters according to a given procedure. This procedure aims at
forming classes such that items of a given class are as similar as possible, while they are as
different as possible from items of other classes. In other words, the total set of n items is divided
in sections (clusters}) which are internally as homogeneous as possible, but externally as
heterogeneous as possible. Detailed mathematical foundations are given by, e.g., Ward [10.4.1],
Wishart [10.4.2], Vogel [10.4.3] and Anderberg [10.4.4].

There are several different cluster analysis methods. The one presented here is particularly well
suited for climatology (Wenzel [10.4.5], Reich [10.4.6]).
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10.4.2 Procedure

Carrying out a cluster analysis consists of 5 steps:

(1) Selection of items to be classified (solar radiation network stations);

(2) Selection of those variables like temperature, wind, sunshine duration efc., which
characterize each station and are suited for classification;

(3) Definition of a criterion of similarity among stations and among clusters;
(4) Definition of a suitable method for finding the optimum number of clusters;

(5) Qualification of the classification results.

710.4.3 Mathematical Background
10.4.3.1 Standardization

Standardization avoids dissimilar internal weighting caused by different variability and it allows
comparisons of characteristics which are measured in different units. Standardization is usually
achieved by means of a Z-transformation

Zi = (Xi - Xm)/S

where Xj is the variable or item (of characteristic feature), Xm is the arithmetic mean and S the
standard deviation of the X;j. By this transformation each variable gets the same measuring unit
and varies within the same order of magnitude.

One has to decide whether the cluster analysis is to be accomplished with non-standardized or
with standardized data, i.e., whether to allow for dissimilar internal weighting ar to avoid this
weighting. The former is not necessarily a drawback, as in our case, monthly or daily sums of
irradiance with a wide range of variability may offer a better chance for distinguishable clusters.

10.4.3.2 Correlation characteristics

The basis of all cluster analysis methods is a data matrix of n elements (rows) and of m
characteristics (columns). This matrix can be presented in an m-dimensional space if its
columns are conceived as orthogonal axes in a Euclidian space. Complete othogonality of these axes
is achieved if the pertinent characteristics, or variables, are not correlated with each other, that
is, if they vary independently. If this is not the case, the Euclidian distances in the cluster
analysis will be distorted. This distortion leads to an internal weighting of the characteristics
corresponding to their degree of correlation.

To find out whether the characteristics are correlated, the correlation matrix has to be evaluated
and subjected to the test of significance. If redundant characteristics are implied, the matrix has
to be reduced in such a way that only independent characteristics remain. This may be achieved by
a factor analysis which combines redundant characteristics in a new, fictitious characteristic. In
the case considered in Chapter 5, factor analysis was not employed.

10.4.3.3 Similarity

Objects or clusiers can be merged if their characteristics are similar. To define a similarity
scale, a so-called distance function has to be chosen that - from a spatial point of view -
represents the distance between two objects within the m-dimensional space of variables.
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If there is only one variable per object, the distance function equals the difference of the values.
If an object has several variables, all distances have to be combined 1o a distance G defined as

1T
2 1 z 2
G, (Xil B le)
1=1

i m

where m is the total number of characteristics, Xj is the measured value of the i-th object, and
Gij2 is the mean square Euclidian distance between object i and object |,

Before evaluating the distance between an object and a cluster, or between two clusters, the
average mean of the characteristics of all objects per cluster, the so-called centroid, has to be
calculated. The latter can be interpreted as the center of a cloud of spots, the spots being at the
spatial positions of the objects. Calculation of the distances between all these n objects or
clusters, vields a symmetrical n-dimensional distance matrix, where it is assumed that the
similarity of 2 objects, or clusters, is greatest if the distance between them is minimal.

10.4.4 Ward's method

Ward's cluster analysis method [10.4.1] is one of the so-called hierarchical agglomerative
methods. It is also known as the method of the error sum of squares and it is widely used. Starting
from the data matrix, the first fusion step consists of merging in one new cluster the 2 nearest
objects. The next fusion step is to choose the cluster with the least error sum of squares. Merging
cluster P with cluster Q is defined as

m
pq 5 532
EQS = P.-Q.
Q p+qu=:‘(l )

where p and q are the number of objects in cluster P and cluster Q respectively, and the P and Q
with overbars are their respective centroids. At the end of this procedure, all objects are
combined in one single cluster.

10.4.5 Defining the optimum number of clusters

Obviously, it has to be decided at which fusion step this heirachical classification procedure
should be stopped. It can be seen from the increase of the error sum of squares how similar or
dissimilar two clusters are at the moment when they are merged into one new cluster. A sudden
increase of EQS at a given fusion step indicates the formation of a heterogeneous cluster by fusion
of two formerly homogeneous clusters. Thus, plotting the error sum of squares as function of the
number of clusters permits identification, by means of the so-called "elbow-criterion” (where
EQS shows sudden increases), those points where the described clustering procedure might be
stopped.
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10.5 Technological supports

In what follows, we review some of the software products useful for an adequate interpolation
process. We examine three classes of products with respect to spatial interpolation performance:
ARC-INFQ as a Geographic Information System (GIS), UNIRAS as a development shell of scientific
applications and BLUEPACK-3D as a geostatistical system.

GISs are able to store, manage, combine and display different geographical data types (spatial
data, raster images, cartographic data}. Geographical data describe objects from the real world in
terms of:

-their position in a given coordinate system,

-their attributes (e.g., solar radiation, elevation),

-their spatial interrelation with each other (topological relations), which describe how they are
linked together or how one can "travel" between them.

Generally, GISs consist of the following modules: data input and verification, data storage and
database management, and mapping. Data input covers all aspects of transforming data captured in
the form of existing maps, field observations, and sensors (including aerial photography,
satellites, and recording instruments) into a compatible digital form. Data storage and data
management determines how position data, linkage (topology), and attributes of geographical
elements (points, lines, areas representing objects on the earth's surface) are structured and
organized, both with respect to the way they must be handled in the computer and how they are
perceived by the users of the system. Data are displayed and the results of the analysis are
reported to the user in the form of maps.

ARC-INFO

ARC-INFO is a GIS distributed by Environmental Systems Research Institute (ESRI) which
contains a Surface Modelling and Display Module called TIN. The latter acronym stands for
Triangulated Irregular Network; a set of adjacent, non-overlapping triangles between points
having x,y coordinates and z values. The TIN data structure includes topological relationships
between points and their closest neighbors (i.e., which points define a triangle and which
friangles are adjacent to each other). Therefore, the TIN model allows for an efficient generation
of various space models. The data which represent the surface are organized into two forms: a
series of x,y,z points and a series of triangles which connect these points to their neighbors. For
example, each triangle can be conceived as a facet of a surface. The information which defines each
of these triangles as a set of nodes and the triangle's adjacency to other triangles forms the
topological structure of TIN. For each triangle, TIN records a triangle number, a list of the 3
nodes defining the triangle, the x,y coordinates of each node, the surface ordinate (z value) of each
node, and a list of each triangle’s three adjacent triangles. Akima's interpolation method is applied
in ARC-INFO and the triangulation method is guided by Lawson's criterion.

A three-dimensional model of the surface is generated from a TIN or from a lattice file. Both

models are based on point data which associate a z value item with an x,y location. Smooth
surfaces generated in this way become the models upon which to perform surface analysis.
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UNIRAS

UNIRAS Inc.'s product is based on rastering techniques and comes in two forms. One is interactive,
supporting non-specialist computer users, the second has an extensive subroutines library
which enables professional programmers to integrate high quality graphics in new or existing
applications.

Interpolations implemented in the Application Graphic Library (AGL) perform gridding
operations based on a variety of methods, most of which have been mentioned in the foregoing
sections. AGL-Interpolations are used in connection with AGL-GRIDS, AGL-BLOCKS, AGL-
CONTOURS and AGL-CONTOURS PLUS for gridding and smoothing geographical data. AGL-
INTERPOLATIONS comprises a collection of FORTRAN 77 subroutines from which the user selects
the required combination. The following techniques are supported:

- a combination of double linear or weighted average, slope calculation, guadratic interpolation
and smoothing. Faults and regions are optionally supported;

- bivariate interpolation with smooth surface fitting based on Akima's procedure. Use of local
functions in the search resulis in lower processing costs;

- fit of polynomial surfaces of any degree to a small region of the grid area. The user has control
over the gridding procedure and may choose the parameters to fit the density of the actual
points;

- gridding with a method similar to the first method. Search, however, is performed using fast
grid operations. The larger the original data set, the larger the gain in computing time. Faults
and regions are, again, optionally supported;

- gridding based on minimum curvature. This technique is based on a surface which has minimum
deformation energy while passing through all the data points;

- AGL-Kriging is a library of routines for estimating semi-variograms for 2-D and 3-D data
points and plotting semi-variograms in 2-D, for Universal Kriging and for 2-D and 3-D
kriging interpolation.

BLUEPACK-3D

A general purpose program for optimal interpolation of a variable distributed in a one, two or
three dimensional space and sampled at points which may be arbitrarily arranged. In addition to
the estimates BLUEPACK-3D calulates the estimation variance which can be used to specify
confidence limits. BLUEPACK-3D can automatically identify the variable's structure based on the
theory of intrinsic random functions. It performs not only kriging but also stochastic simulation
in 3-D by the "turning bands" method. The automatic structure identification permits good use of
BUEPACK-3D in mapping applications.

The products reviewed above are implemented on a variety of computers: from personal
computing to mainframe and graphic workstations. The class of GIS develops the deterministic
approach in terms of Akima's interpolation or in terms of moving averages. Thus, ARC-INFO has
the ability to conveniently manage cartographic information, but it doesn't include the
geostatistical approach. UNIRAS is able to manage geostatistical tools and deterministic methods in
a sophisticated graphical environment. It doesn't support specialized input/output devices but
provides shells to develop such applications. BLUEPACK-3D includes complex geostatistical
analysis and it contains some of the GIS functions (from data acquisition to mapping). It is
designed specifically for the end-user.
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CHAPTER 11

11. THEORY OF SATELLITE-BASED METHODS

Review prepared by: Maurizio Noia, Corrado F. Ratto and Roberto Festa
Department of Physics, University of Genoa

Under sponsorship from: National Research Committee and MURST

Satellite-based estimates of the irradiation available at the Earth's surface were introduced in
Section 2.3 in the course of the presentation of the data. In order to allow discussion of the
validation results, Section 4.1 included first principles of the conversion of the counts registered
by the satellite's radiometers into irradiation at ground level. The present Chapter elaborates the
theory of the conversion methods, describes basic examples and systematically points out the
differences among them. In a certain sense, this Chapter describes the physical content and the
numerical background of Fig. 4.1 in Chapter 4.

111 Introduction

Some of the first attempts to utilize satellite data in estimating incident solar radiation at the
earth's surface are found in the works of Hanson [1], Vonder Haar and Ellis [2,3,4]. All these
methods were based on the images provided by polar satellites. A major drawback of these early
insolation studies was the limited temporal coverage provided by the polar orbiting
metearological satellites {(only one or two daylight images per day). This meant that cloud cover
variations could not be taken into account within the framework of these early studies. The
problem of cloud cover variability was solved through use of daia from geostationary
meteorological satellites. These data have high temporal resolution, as these satellites are capable
of producing an image every 30 minutes with acceptable spatial resolution (1-5 kilometers at
the subsatellite point).

To estimate the solar irradiance incident on the ground by satellite images, two different
approaches were developed. The first approach is represented by the methods based on a
statistical regression between the digital counts measured by the satellite and the corresponding
solar radiation value measured at the earth's surface. These are commonly termed statistical
methods. The second approach is represented by the methods based on radiative transfer models
that explicitly describe the physical processes (i.e. scattering and absorption) operating in the
earth-atmosphere system. These are usually referred to as physical methods.

In this chapter we describe the concepts and approximations on which both statistical and
physical methods are based and we review some of them, namely those developed by Hay and
Hanson [5], Tarpley [6], Justus, Paris and Tarpley [7] and Cano [8], for the statistical methods,
and those developed by Gautier, Diak and Masse [9], Méser and Raschke [10], Dedieu, Deschamps
and Kerr [11] and Marullo, Dalu and Vicla [12], for the physical methods. We also report the
precision of all these methods as assessed in several applications by the authors themselves
and/or by other scientisis (e.g. Raphael [13] and Raphael and Hay [14]}.

11.2 Physical basis of all methods
The solar radiation incident on the top of the atmosphere interacts with the atmospheric

components (i.e. molecular gases and aerosol particles) and with the clouds. As a consequence, a
part of this radiation is backscattered toward space, a part is absorbed, while the rest reaches the
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ground. The radiation reaching the ground interacts with the earth's surface: a part of this
radiation is absorbed by the ground, while the remainder is reflected back toward space.
Therefore the solar radiation emerging from the atmosphere is composed of the solar radiation
backscattered by the atmosphere before reaching the ground, and by that reflected by the earth's
surface and transmitted again through the atmosphere, as illustrated in figure 1.

IE, IE;

E4

atmosphere

IG |/AxIG
FEG

ground

Figure 1: Solar radiation fluxes in the atmosphere - earth system

Considering the flux density conservation in an earth-atmosphere column, we may write (see
figure 1):

IE] = IET + EA + EG (hH
where:

|E| represents the flux density of the downward solar radiation incident on the top of the

atmosphere;
IET represents the flux density of the upward solar radiation emerging from the atmosphere,

which is proportional to the brightness measured by the satellite;
EA is the solar radiation flux per unit surface absorbed by the atmosphere;
Eg is the solar radiation flux per unit surface absorbed by the ground.

The solar radiation absorbed by the ground can be expressed in terms of the surface albedo A and
the solar irradiance at the surface 1G:

Eg=IG(1-A) (2}
Hence, substituting equation (2) in (1} and solving for IG, we obtain:

IG = (IE - IET - EA)/(1 - A) . (3)
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|E| depends on the solar zenith angle and on the sun-earth distance and can be compuied by means
of the following equation:

IE} = Fes (ro/r)2cosé (4)
where:

Fes = 1367 W/m?2 is the solar constant;
ro and r are, respectively, the mean and the actual sun-earth distance;
8 is the solar zenith angle.

Notice that, since the radiometers on board the satellites are sensitive to visible radiation in a
window (e.g. 0.40 - 1.10um for METEOSAT) narrower than the spectral range of pyranometers,
some authors (e.g. Marullo et al. [12]} use a correspondingly reduced value for the solar
constant.

If we were at anytime able to estimate the energy Ea absorbed by the atmosphere and to know a
priori the surface albedo A, then equation (3) could be used to estimate 1G from the values of {E7

measured by the satellite radiometer. Unfortunately, the problem is more complex since it is not
possible to know the surface albedo A for every point of the region studied and since the value of
Ea is very variable depending on the atmospheric conditions.

One of the most important factors affecting both the incoming solar radiation at the earth's
surface and the solar radiation emerging from the atmosphere, is the change in the solar zenith
angle corresponding to a change in the air mass through which the solar radiation propagates. The
second largest cause results from the presence of clouds. The presence of water and ice droplets in
clouds strongly increases both absorption and scattering of solar radiation. Changes in
atmospheric water vapor or aerosol content can be considered as second order effects.

Since changes in solar zenith angle can be exactly computed, if we can outline cloud regions in the
satellite images and evaluate with reasonable accuracy their effects on solar radiation, then we
might be able to estimate insolation in both clear and cloudy conditions. Indeed the flux density IEt
measured by the satellite is very sensitive to clouds, since clouds can be intense reflectors of
‘visible solar radiation. So the upward flux density |IEt associated with a cloudy region is, in
general, much larger than that associated with a clear sky area (except for snow or ice covered
regions) and this is used to detect the presence or absence of clouds. In the following we shall see
that some models also use the values of the filux of infrared radiation reaching the satellite in
order to improve the distinction between cloud cover and some kinds of land.

11.3 General description of the methods

The methods to estimate solar irradiance at ground, as we have already pointed out, may be divided
into statistical and physical types. Statistical methods are based on one or more relationships,
treated as statistical regressions, between the solar radiation measured by means of a
pyranometer in a meteorological station and the simultaneous digital count value provided by the
satellite for the pyranometer site. This relationship is used to estimate the surface solar
irradiance for the entire region. The independent variables used in the regression equations
include:

cosine of the solar zenith angle, cose, that gives, among others, information about flux incident on
the top of the atmosphere;

cloud cover index, n, to describe the amount of the cloud cover over the studied region;
atmospheric transmittance, T(8) = |G/IE,, to account for the attenuation produced by the
atmospheric components;

brightness, B, measured by the satellite and assumed proportional to IET, that gives information

about the upward solar radiation emerging from the atmosphere;

33




clear-sky brighiness, Bg, that gives information about the ground albedo;
maximum brightness, Bmax, that gives information about the cloud albedo.

The physical methods are based exclusively on physical considerations that explicitly represent
the radiant energy exchanges taking place within the earth-atmosphere system. The main
quantities considered in the physical methods are:

scattering and absorption coefficients of the clear atmosphere components;

cloud albedo and absorption coefficients;

surface atbedo.

The main advantage (see Table 1) of the statistical methods is their simplicity and, consequently,
their operational efficiency. Indeed they use the digital count values provided by the satellites to
estimate surface irradiance and do not need to convert such values into flux density of the upward
solar radiation emerging from the atmosphere. Furthermeore, these methods usually do not need
complementary meteorological data (i.e. temperature, humidity and precipitable water).

Tab1le 1: Advantages and disadvantages of both statistical and physical methods.

Statistical Physical
e operational | e generality
efficiency

¢ no needfor | ¢ no need for
meteorological | ground solar

data radiation
data

e no need for

calibration

e need s need

ground solar | meteorological

radiation data

data

e lack of e need

generality calibration

nEHQF3Zr<U0bu~gdouEdQEd2Z2 <0

The main limits of the statistical methods are the need for ground solar radiation data and the lack
of generality. Remember that the regression equation coefficients, determined for the places
corresponding to the ground solar radiation data, are used to estimate the solar radiation reaching
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the ground throughout the region studied. Furthermore, there is no guarantee that these
coefficients would have the same values in other areas. The main advantage offered by the physical
methods is their generality, since they may be applied everywhere. Besides, they do not need
solar radiation data measured at the surface. However, some of the physical methods need
complementary meteorological data to estimate the various quantities relative to the interactions
of the solar radiation with the atmosphere. Another limit of the physical methods is that they
convert the satellite digital counts into the corresponding flux density of the upward solar
radiation emerging from the atmosphere. This conversion requires an accurate and updated
calibration of the instrument.

A difficulty commen both to statistical and to physical methods (but more significant for
statistical) is that the space and time scales of satellite images are different from those of
ground-based measurements. In particular, two problems arise when comparing the satellite data
to ground solar radiation measurements. The first problem results from errors in locating the
pyranometers sites on the images. The second problem is that saiellite data are instantaneous
measurements over a small solid viewing angle, while the ground measurements are integrated
over time (usually one hour} over a solid angle of 2x. The solution found to both problems is the
use of target areas encompassing numerous pixels. This not only reduces the spatial problems but
also those connected to the time discrepancy. As Tarpley claims in the paper cited below, an
instantaneous measurement averaged over a 50 km target is likely to be equivalent to a time
averaged point measurement made by a pyranometer, at least to the extent that cloud distribution
is uniform within the targets and that changes in cloud type and thickness are small over an hour.

Tarpley [6] subdivides the GOES satellite images relative to the considered region into target
areas made up of 7 x 6 8-km resolution pixels {~ 50 x 50 km)}, centered at the intersections of
0.5¢ latitude and longitude lines. Justus, Paris and Tarpley [7] considered target areas of 5 x 5
8-km resolution pixels (= 40 x 40 km). with targets centered on a 1° x 19 |atitude-longitude
grid spacing.

Gautier et al. [9] averaged the estimates deduced from the satellite images over 8 x 8 2.5-km
resolution pixels {= 20 x 20 km) centered on a given ground station.

Raphael [13,14] calculated the radiation on a 5 x 5 pixel array (= 4 km East-West x 8 km
South-North} and assumed that three adequately weighted (with respect to time) images should
represent the radiation conditions for one hour.

11.4 Statistical methods

The simplest statistical method is that developed by Hay and Hanson [5], here referred to as the
HH method. The main feature of this method, which uses only visible satellite data, is its
treatment of the atmosphere as a "black box". However, despite what we wrote about the general
features of the statistical methods, the HH method requires calibration of the satellite data.

The method developed by Tarpley [6] (referred to as the T method) also uses only visible satellite
data. This method is based on a discrete cloud index that distinguishes three sky conditions: clear,
partly cloudy, and cloudy. Hence, for every condition, Tarpley developed a different regression
equation. These regression equations have some physical basis so that the T model is considered as
the more physical among statistical methods. A simplification of the T method was developed by
Justus, Paris and Tarpley [7]. This method, here referred to as the JPT method, does not require
the estimation of a cloud index and is based on one regression equation only, valid for all cloud
conditions.

The last statistical method we will review is that developed by Cano et al. [8] {referred to as the C

method). The C method describes the cloud amount with a cloud index that, in this case, is a
continuous quantity. This method appears to be very simple with sound physical basis.
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11.4.1 HH model

The HH model [5] was part of a study undertaken to map the distribution of shoriwave radiation
incident at the sea surface, for the Global Atmospheric Research Program Atlantic Tropical
Experiment, using satellite observations in the visible region of the spectrum (0.55 - 0.75um),
The HH method is based on a simple linear relationship between the visible radiance, SR=IEV/IE,
i.e. the radiation measured by the satellite sensor and normalized to the extraterrestrial
irradiance, and the atmospheric shoriwave trasmittance T, defined as the ratio between the
irradiance at the surface, 1G, and the extraterrestrial irradiance, IEL. This expression
is:

T=a-bSR (5)

where a and b are the regression coefficients. Notice that the digital counts provided by the
satellite have to be transformed into the visible radiance via calibration procedures.

Equation (5), remembering equation (4), can also be written as:
IG = Fes(ro/r)2 cosb [a- b SR . (6)

The values of the regression coefficients a and b determined by Hay and Hanson are:
a =0.79, b = 0.71

Raphael and Hay [14] (see sect. 11.6) find a better agreement with their data base using the
following values for a and b:

a=0.788, b=1.078

Note that the atmospheric transmittance changes as the content of the atmosphere changes. An
increase in the concentration of aerosols, water vapor and cloud cover, produces increased
scattering in the atmosphere: this results in a decrease in the atmospheric transmittance and
ground measured insolation and, inversely, to an increase in the satellite measured radiance. On
the other hand, an increased absorption will reduce the radiation measured at the surface and, at
the same time, the radiance measured at the satellite. Thus an inverse relationship between
atmospheric transmiitance and satellite measured radiance as in equation (5) should easily
capture the variations in scattering which influence the irradiance measured at the surface, but
will be less reliable when absorption is significant.

The relationship breaks down under conditions of high surface albedo (e.g. a snhow or ice covered
surface). The high albedo will increase both the brightness measured by the satellite (except
under heavily overcast conditions} and the radiation measured at the surface through the effect of
multiple reflections. This would lead to a significant underestimation of the radiation at the
surface, particularly under a clear sky.

11.4.2 T model

The method developed by Tarpley [6] represents a part of the outcome of an experiment conducted
in the summer of 1977 over the U.S. Great Plains. In this study GOES images were used. The
modelling procedure requires the development of a clear sky (i.e. minimum) brightness
parametrization, the determination of a cloud index and other image related quantities (mean
target brightness and mean cloud brightness) and the determination of the atmospheric
trasmittance. All these quantities are used in the final regression equations.

11.4.2.1 Clear-sky brightness parametrization

To determine cloud characteristics, it is necessary to know when each pixel is cloud free. Tarpley
calculated an experimental clear-brightness value by regression against functions of solar zenith
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angle and the azimuth angle between the sun and the satellite. The clear-sky brightness
parameterization was provided by the following equation:

Bo = a + b cos8 + ¢ sin6 cos¢ + d sind cos2¢p (7)

where:
Bo = minimum brightness;

8 = local solar zenith angle; o o
¢ = azimuth angle between sun and satellite, illustrated in figure 2.

The second term on the right hand side of equation {7} accounts for the geometry of the incident
flux; the following two terms are introduced to account for changes in target brighiness due to
shadowing at the surface and anisotropic scattering.

sun Z satellite

Figure 2: Solar and satellite angles used in the clear sky brightness equation.

To compute the clear-sky brightness regression coefficients a, b, ¢ and d more than 100
observation targets were collected by Tarpley during 27 days just prior to the test period. For
each day and for each target, mean standard deviation and the solar azimuth and zenith angles were
computed and stored. Tarpley adopted the following automatic cloud detection and elimination
procedure.

- A pass was made through the data discarding cases with solar zenith angles > 859, since
observations at large zenith angles were likely to be anomalous.

- Cases with excessive target standard deviations were discarded: this criterion was used as an
indication of clouds in the target. The selection with respect to siandard deviation produced cloud-
free data for determining a reasonable clear-sky brightness prediction.

- The "residuals”, defined as the difference between the measured and the predicted brightness,
were calculated for each target. Residuals from the "first guess” clear-sky brightness equation
were used to identify the remaining cloud-contaminated targets.

- Thresholds were fixed to eliminale targeis contaminated by small or partially transparent
clouds. Residuals were compared with thresholds: residuals exceeding these thresholds were
discarded from the data base.

- After three cycles, this procedure yielded a cloud-free data set and reliable regression
coefficients.
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Notice that targets containing features with markedly contrasting brightness, such as steep
mountains, coastal areas and great lakes, could not be accurately fit to the regression equation.

11.4.2.2  Determination of the cloud index
and other image related quantities

Cloud amount in each target is determined via a two-threshold method, originally developed by
Shenk and Salomonson [15]. This method classifies the pixels into three classes, clear, partly
cloudy and cloudy, separated by two threshold values (in [15] these classes are defined with
respect to count values on a 6-bit scale (GOES) ranging from 0 to 63):

a clear/partly cloudy threshold Tq is defined as the clear brightness, Bp, plus three counts: a
pixel is defined as clear if its count value is < Tq;

a partly cloudy/cloudy threshold T2 is defined as the clear brightness, Bg, plus five counts. Any
pixel with value > T4 but £ To is considered to be partly cloudy. Pixels with values > T are
classified as cloudy.

The cloud index n is determined via the following expression:
n = (0.5N2 + N3})/(Ny+No+N3g) = (No + 2Nz }/(2N) (8)

where N is the total number of pixels in a target area, while Ni, N2 and N3 are the numbers of
pixels in clear, partly cloudy and cloudy categories, respectively.

The mean target brightness B, another image related quantity, is simply defined by Tarpley as
the mean brightness of a 7 x 6 pixel array. The last image related quantity is the mean cloud
brightness Bgld, used as an indicator of cloud thickness: mean cloud brighiness is computed by
averaging the brightness values of ali pixels in the 7 x 6 array that are brighter than T»,

11.4.2.3 Atmospheric transmittance delermination

In order to obtain the final regression equation between the solar radiation received at the earth
surface and the brightness seen by the satellite, Tarpley introduced an atmospheric transmittance
T, obtained by means of the following equation:

T= TWS X Twa X Tr (9)

where Tws, Twa and T; denote the visible transmission due to water vapor scattering, water
vapor absorption and Rayleigh scattering, respectively. The scattering transmission functions
{Davies et al. [16]) are:

Tws = 1 - 0.00225 w m (10)

and
Tr = 0.0972 - 0.0826 m + 0.00933 m2 (11)

where w is the equivalent column of precipitable water (cm) and m is the optical air mass. The
water vapor transmission function (Mc. Donald [17]} is:

Twa = 1 - 0.077(w m)@.3 . (12)

The expression for m used by Tarpley is:
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m = exp{-z/8243)/cosd (13)

where z is the station's elevation expressed in meters, and ¢ is the solar zenith angle. Expression
(13) is not valid at large zenith angles. Raphael and Hay [14], therefore, prefer the formula
developed by Kasten [18]:

m = exp(-2/8243)/[cos® + 0.15/(93.88050- g0)1.253] (14)

11.4.2.4 Regression equations

To properly account for the different physical processes depleting the incoming solar radiation
under clear, partly cloudy and cloudy conditions, the T model uses three different equations.
According to the cloud amount in the target, hourly solar irradiation is estimated as follows:

HG=a+bcost+cT+dn+e (Bn/Bg)2 (n < 0.4)
HG = a + b cos6 + ¢ n (Bgg/Bn)2 (0.4 <n<1) (15)
HG = a + b cosb + ¢ (B¢|d/Bn)? (n =1)

where:

HG is the hourly surface irradiation;
B = Bo(0 = 459,46 = 105°) is the normalized clear-sky brightness;
while n, Bm, Bcld: Bo, T and © were already defined in the two preceding sections.

Table 2: Regression coefficients entering equations (15} as determined
by Tarpley (1979) and - in parenthesis - by Raphael and Hay (1984).
Units: kdm-2h-1.

Coefficients clear partly cloudy cloudy
n<0,4 |0,4<n<1,0|n =10
a - 809.54 -400.79 -274.73
(-195.67) (-199.30) (-49.80)
b 3646.91 3959.34 3672.04
(3722.93) {4047.97) (2187.16)
c 1155.10 -319.13 -314.10
(85.98) (-329.30) (-168.80)
d -438.90
(151.10)
e -266.78
(-90.86)

Satellite brightness measurements were constrained by Tarpley to enter the regressions as ratios
to compensate for time variations in reflected radiance, geographic variations in albedo, and to
minimize effects of instability in the visible sensor. Indeed, the observed brighiness of a clear
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target will vary on a completely clear day due to changing illumination angles, while the ratio
between the measured target brightness and the predicted brightness is relatively constant for
different targets and for different times of the day. In the case of cloudy targets, the measured
cloud brightness was divided by a "normalized" surface brightness to reduce calibration errors
and, perhaps, partially compensate for albedo differences from target to target.

The values of the regressions coefficients a, b, ¢, d and e determined by Tarpley are reported in
Table 2, in kJ m2 h-1, together with the values obtained by Raphael and Hay [13,14] in their
experiment (see section 11.6).

From Table 2 it is also evident that identification of both substantially clear scenes and cloudy
conditions is possible only if the dependence on the solar zenith angle is accounted for within the
images.

11.4.3 JPT model

The model developed by Justus, Paris and Tarpley [7] was part of the Agriculture and Resources
Inventory Surveys through Aerospace Remote Sensing (AgRISTARS) program and was applied to
produce insolation maps of the United States, Mexico and South America based on GOES images. The
JPT modetl is a simplification of the T model, presenting only one regression equation valid for all
cloud conditions and without need for supplementary meteorological data such as the precipitable
water content of the aimosphere.

11.4.3.1  Clear-sky brightness values estimate

To account for variations in the directional reflectance of the earth-atmosphere system due to
variations with earth-location position of viewing angle and solar illumination angle, Justus and
coworkers determine values of the clear-sky brightness for each satellite viewing time and for
each of the target areas by the following procedure which they term "minimum brightness
technique”.

The authors assume to already know, for a particular time of day and for each target-area, a
brightness under clear-sky conditions, Bg', and the corresponding observed mean target
brighiness Bm (see section 11.4.2.2). Two thresholds, Bmin and Bmayx, are pre-determined,
which indicate the likely presence of clouds at the time of observation (Bm > Bmax) or
insufficient scene illumination for insolation estimates (Bm < Bmin ). Notice that in this model,
brightness is in 6-bit digital counts but the numerical values to attribute to Bmin and Bmax are
not given in the cited paper.

For each new image a new clear brightness value Bg is determined in the following way:

Bg = Bp' if Bm 2Bmax

Bp = wiBg'+(1-w1})Bm if Bg' < Bm < Bmax
Bo = Bm if By -2 < B < By’
Bg = woBo'+(1-w2)Bpm if Brin < Bm < Bo'-2
By = Bo' if By < Brnin

where the weights wy and wo can assume values between 0 and 1. The values empirically
determined by Justus, Paris and Tarpley, are respectively 0.99 and 0.90.

The first equation (likely presence of clouds at the time of observation) leaves the clear
brightness unchanged if the observed counts exceed the predetermined threshold Byax. The second
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equation, with wq only slightly less than 1, allows a small increase in clear-sky brightness to
occur at intermediate values of Bny, in order to allow the clear-sky brightness to increase with
seasonal variations in surface reflectance or solar illumination angle. The third equation replaces
the current clear-sky brightness value with any lower count (i. e. clearer sky) values
encountered. The fourth equation, with wa greater than 0, does not allow the clear-sky brightness
value fo decrease by a large amount from one observation to another: this feature is an attempt to
suppress spurious effects on Bp values caused by satellite navigation errors, image line dropouts
or other problems, which occasionally occur in the satellite imagery. Finally, the fifth equation
(insufficient scene illumination for solar radiation estimates if By, drops below the
predetermined minimum threshold Bnin.) leaves the clear-sky brightness unchanged.

11.4.3.2 Regression equation
For each target area, the observed mean target By, and clear-sky brightness By, determined as
described above, are used to estimate hourly irradiation. The algorithm, which replaces equation
(15) of Tarpley, is represented by the following equation:
HG = Fo {ro/r)2 cost [a + b cosd + ¢ cos28] + d (B2 - Bg2) (16)
where:

Fo = 4921kJm-2h-1 is the hourly total value for the solar constant, while the values of the
regression coefficients a, b, ¢ and d given by the author are reported in Table 3.

Table 3: Regression coefficients entering in equation (16} as proposed by
Justus et al.(1986): a, b, and ¢ are dimensionless, d is in kJm-2h-1,

0.4147 0.7165 -0.3909 -1.630

The last term in the right hand side of equation (16) is the cloud correction term. It was set by
the authors proportional to the difference between the squares of the observed radiance and of the
clear-sky radiance, since they used satellite data from GOES whose nominal calibration has
radiances proportional to the square of brightness counts.

11.4.4 C model

The method developed by Cano [19] and Cano et al. [8], subsequently slighty modified by Moussu
et al. [20], represents the basis for the HELIOSAT project of Ecole Nationale Supérieure des
Mines de Paris, Sophia-Antipolis (France}. This approach was developed to treat METEQSAT
images in the visible channel.
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The basic concept of the C method is that the amount of cloud cover over a given area, statistically
determines the global radiation for that area. Thus the processing is divided into the following
steps:

- a map of the reference ground albedo is constructed and constantly updated, giving information

about the clear-sky planetary albedo for every pixel;
- a cloud cover index map is derived from the comparison of the current satellite image and the

reference albedo map;

- the atmospheric transmittance factors are computed using ground pyranometric data and a
statistical linear regression between these factors and the cloud cover index at the same location;
- finally, the atmospheric transmittance factors are used to construct the global radiation map.

771.4.4.1 Construction of the reference albedo map

The first step of the C approach consists in the determinaticn of a reference albedo, p, defined as
the ratio between the visible digital counts from the satellite, IEt, and the flux 1G incident on the
ground. The term "reference" is used to underline that this quantity is not a physical albedo since
the visible counts are not converted, through calibration, to a true physical flux.

According to the Bourges model [21], Cano et al. describe the global radiation 1Gg incident on the
ground at instant t under clear-sky conditions in the following way:

IGo = 0.7 IE| (1) (sine)!1+2 (17)

where 0 is the solar zenith angle and g is a parameters that characterizes the total atmospheric
transmittance. lts value ranges from 0.14 to 0.17 and the value retained in the C method is 0.15.
Then the solar irradiance received by the satellite in clear-sky conditions can be written as:

IET = po 1Go = 0.7 po IE| (sing)!-15 (18)
|

where pgo is the reference albedo for clear-sky conditions.

Note that equation (18) does not take into account the solar radiation attenuation after its
reflection on the ground. It was subsequently corrected by Moussu et al. [21] and became:

IET = 0.7 po IE| (sin® singg)!-15 (19)

where 85 represents the satellite’'s zenith angle.

The reference albedo po is evaluated at each pixel in a recursive procedure by normalizing the
the measured radiances |E1 by the radiances resulting from the clear-sky model, the cloudy cases
being eliminated at each step. This is made possible by the fact that the cloud albedo is greater
than the ground albedo, except over snow and some desert soils. If the cloud albedo is greater than
the ground albedo, the presence of a cloud in the field of view of the sensor will result in
increased measured radiance. Assuming that, given a satellite image time-series, the clouds are
non-stationary, the minimum value observed at each pixel will provide the clear sky situation
(reference albedo map).

The iterative procedure usually converges to the mean reference albedo value: important
exceptions are snow, some desert surfaces and stationary clouds in the examined time-series.
Then, cloud detection can be performed by the difference between the cloud induced response and
the corresponding view of the ground under a clear-sky.
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11.4.4.2 Evaluation of the cloud cover index

The inverse of the algorithm used to derive the reference map of the ground albedo is applied to
the construction of a completely cloudy image while retaining only the cloudy cases. The
histogram of this purely cloudy image provides an estimation of the average albedo of the top of
the opague clouds, pc.

The cloud cover index nl{i,j) at pixel {i,j) for a given image at time t is defined as a function of
the reference albedo, poli,j), of the apparent albedo at the same point in the image, pl{i,j), and of
the average albedo of the cloud tops, pe as

nYi) = [pli) - po(Lidlpc - Poli.f)] (20)

This cloud cover index ranges from 0 to 1 and it can be interpreted as the percentage of the cloud
cover per pixel.

Expression (20) for the cloud cover index is not valid when the ground albedo is of the same
order of the cloud albedo. This is the case for snow or ice covered areas and for some desert areas.
In this case Cano [19,8] proposed a different definition of the cloud cover index using the radiance

RY(i,j) measured by the satellite in the thermal infrared spectral band. The new expression for
the cloud cover index is then

nt'(ij) = [RQ)) - Rsl/[Rc - Rs] (21)

where R is the radiance of the opaque cloud tops and Rs is the radiance of the surface covered by
snow or ice. Both these quantities are determined using histograms of the thermal infrared
images; however no further study of this alternative approach was performed, as far as we know .

11.4.4.3  Slatistical relationship between cloud cover
index and ground measured transmission

The C method uses a linear regression between the satellite determined cloud cover index and the

ground measured transmission factor T(i,j}), also known as the clearness index, and defined as
the ratio of global radiation reaching the ground, IG, to the extraterrestrial irradiance [E| ,i.e.,

THij) = IG(LIVIE, (i) (22)

Considering the cloud cover index nl(i,j) as the percentage of a pixel covered by clouds, the global
irradiance at ground may be written as a linear combination:

IGHEL) = nl(ij) IGe(i)) + [1 - n'(i,))]IGo (i) (23)

where 1G¢ and I1Gg are the global irradiance for overcast and clear sky conditions, respectively.

To each of these extreme conditions one can associate a transmission factor, Tg(i,j) respectively
Toli,j}, which is supposed to be constant for a given hour. This realistic hypothesis leads to the
following linear relationship:
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T = n{EDTe) + [ - al()ITo (i)
= n{LTe i) - Tolii)l + To(i))

= a(ij) n'(i) + b(ij) (24)

where a(i,j) and b{i,j) are the regression coefficients .

These are determined by comparing the transmission factors deduced from the solar radiation data
measured at ground with the corresponding cloud cover index derived from satellite images . Once
these coefficients are known at ground stations, methods of interpolation, e.g. kriging, may be
applied in order to define the complete field of coefficients for the area studied . However practice
has shown that a and b vary only little in space but more with the viewing geometry. Therefore,
the operational versions of the C method treat them as constants which change only between the
morning, noon and afternoon images.

11.4.4.4 Determination of hourly global radiation at ground

Estimation of the hourly global radiation follows from the definition of the transmission factor
HG(i,j) = T{i.))HG| (25}

where HG| stands for the extraterrestrial radiation incident on the top of the atmosphere IE|
integrated over an hour.

11.5 Physical methods

One of the best known physical methods is that developed by Gautier, Diak and Masse [8),
hereafter referred to as the GDM method . The main feature of this method is the formulation of
two differents models for clear-sky and cloudy conditions . This method was recently (1987)
considered by Marullo, Dalu and Viola [12] for the development of a new physical method (MDV)
The MDV method, in analogy with the GDM method, presents two different models: a standard
atmosphere model and a real atmosphere model. The standard atmosphere model is similar to the
GDM clear-sky model, while the real atmosphere model differs from the GDM cloudy-sky model
in the description of aerosol and cloud effects .

The third method to be described was developed by Méser and Raschke [10] (MR), about the same
time as the GDM model. The MR method is based on radiative transfer model calculations more
elaborate than the simple ones used in the other methods described here. The radiative transfer
model presents, as input parameters, several climatological quantities related to the atmospheric
compenents and to the clouds. In particular, the inclusion of physical parameters related 1o the
clouds (e .g., cloud top heights and optical depth of clouds) in the radiative transfer model requires
the use of the thermal infrared data provided by geostationary satellites .

The fourth physical method described in this review is that developed by Dedieu, Deschamps and
Kerr [11] (DDK). The main feature of this method is the formulation of a unique model valid both
for clear and cloudy conditions .

11.5.1 GDM method

The GDM method is based on the following three assumptions: )
- water vapor is the principal atmospheric component responsible for the depletion of solar

radiation by absorption;
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- aerosol effects, while important, are not considered because they are complex, variable and not
well known;
- scattering from the ground is assumed to be isotropic.

The GDM method uses different models for cloud-free and cloudy atmospheres.

11.5.1.1 Clear-sky model

The solar radiation emerging from the atmosphere and measured by the satellite sensor, as we
already noted, is composed of the radiation emerging from the atmosphere before reaching the
ground and of solar radiation scattered by the earth's surface and propagating back through the
atmosphere . Thus, in the absence of clouds, the solar radiation reaching the satellite is expressed
in the following way (see figure 3 ):

IEt = IEj o+ IE; (1-a)[1-a(uq)][1-a(uz2)]{1-c1)A (26)

where:
o = scattering coefficient for beam radiation (dimensionless);

ai = scattering coefficient for diffuse radiation (dimensionless);

a(u1), a(ug) = absorption coefficients for slant water vapor paths, uy for solar zenith angle and
ups for satellite zenith angle (dimensionless);

A = surface albedo .

The scattering coefficients ¢, as a function of the solar zenith angle 6, and o4, as a function of the
satellite zenith angle 05, have been taken from Coulson [22] and are reported in Table 4. The
absorption coefficients a(u{) and a(uz) were expressed by the analytical expression derived by
Paltridge [23] as a function of atmospheric precipitable water u:

a(uq) = 0,14(u1/cosp)0-44 for uy < 0.05 cm
a(uy) = 0,099(u1/cosp)0-34 for uy > 0.05 cm
a{up) = 0,14{us/cos0g)0-44 for us < 0.05 cm
a(ug) = 0,099(uz/coseg)0-34 for us > 0.05 cm

Table 4: Scattering coeflicients o and o for different zenith angles.

Zenith angle

(deg) o o

66,4 0,085 0,076

53,1 0,074 0,076

36,9 0,060 0,078

23,1 0,055 0,076
0,0 0,053 0,076
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Figure 3: Scheme of the clear-sky model by Gautier, Diak and Masse (1980)

The atmospheric precipitable water u is parameterized via an empirical function of the surface
dew-point temperature tq, developed by Smith [24]:

In{(u) = [0,1133-InA] +0,0393ty
where A is a parameter depending on the season and the latitude.

The value of the solar radiation IET can be derived, by means of a calibration procedure, from the
visible satellite measurements, so that equation (26) can be solved with respect to the surface
albedo A:

A = {IEr - 1B o}{IE, (1 -a}[1 -a(u)][1 -a(uz2))(1 -c1)} (27)
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With this surface albedo, the incident solar radiation at the ground becomes:
IG = IE|(1-a)[1-a(u1)]{1+Aaq) (28)

This original model was subsequently revised by Gautier and Frouin [25], to include ozone
absorption, aerosols and multiple reflections. The aerosol effects, resulting essentially from
scattering processes, have been parameterized according to Tanre et al. [26]. The formula for the
solar radiation reaching the ground becomes:

IG = IE| {C1exp(-Cp/cos8){1 -Ozq)(1 -Ozz)[1 -a(uq)l}/(1 - C3A) (29)
where
Oz4 and Ozgz are ozone absorption coefficients;
C1, Co and C3 are empirical constants derived from the surface visibility: the values used by

Gautier and Frouin, who considered only surface visibility of 23 km and 5 km, are reported in
table 5.

Table 5: Coefficients for aerosol effects proposed by Gautier and Frouin (1985)

visibility Cq Co Csy3 (4
05 km 0,91 0,1165 0,128 0,206
23 km 0,99 10,0644 0,093 0,148

11.5.1.2 Cloudy atmosphere model

The calculation of incident radiation in a cloudy atmosphere is more difficult than for clear-sky
conditions. The scattering and absorption processes outlined for the clear atmosphere can take
place above, between and below cloud levels. Because clouds scatter, absorb and reflect radiation
in ways that even complex models describe with some difficulty, Gautier et al. [9] chose a simple
treatment, valid for stratiform low and middle clouds: these clouds are the ones which attenuate
solar radiation the most over space and time.

To describe the solar radiation received by the satellite under cloudy conditions, the authors
consider separately the absorption above and below the clouds for both the downwelling and the
upwelling paths, as depicted in fig. 4. The solar radiation received by the satellite is then
approximated in the following way:

[Et =1 a+

+ IE|(1-a)[T-a(uq))(1-aq)Ac[T1-a(ug)] +

+ IE)(1-a)[1-a{u1}1](1-Ac)?[1-a(u1)p] X

x A(1 -aq}[1 -au)t(1 -abs)2[1-a(uz)p] (30)
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IE|(1 — a)[1 — a(u1)e](1 — a1)A[1 — a(uz)]+
IE, IBa FIEY(1 — )1 — afu)l(1 — A[L — alur )l
xA(1 — o)t — a(u2)e](1 — aba)?[1 — a(us)s]

S S/
/ atmosphere

ground

IE {1 —a)[l = a(u):](1 — abs)(1 — A)[1 — e(u)s)

Figure 4: Scheme of the cloudy atmosphere model by Gautier, Diak and Masse (1980)

The new (dimensionless) variables introduced in this formulation are:
a(uq)t and afu2)t = absorption coefficients for slant water vapor paths above clouds;

a(u1)p and a(uz}p = absorption corfficients for slant water vapor paths below clouds;

abs = cloud absorption coefficient;
A = cloud albedo.

The three terms of equation (30) represent, respectively: the shortwave radiation scattered from
the atmosphere to the satellite; the shortwave radiation reflected from the cloud to the satellite;
and the shortwave radiation propagating through the cloud, backscattered by the ground, through
the cloud, and to the satellite (see figure 4).
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For low and middle clouds the authors estimated an average of 30% of the atmospheric water
vapor is above the cloud level (i.e. a(uq)t = 0.3 a(u1)), thus assuming that most of the water

vapor is located under the cloud base.

Cloud absorption was estimated on the basis of the visible brightness measured by the satellite
that indicates the presence (high values) or the absence (low values) of clouds. The authors chose
a simple linear relationship between cloud absorption and visible brightness ranging from zero
for no cloud to a maximum of 0.2 for very deep clouds.

With the radiant flux IEt derived from the counts measured by the satellite, and accepting that the

surface albedo A is known from equation (27), equation (30) can be solved for the cloud albedo
Az. The incident shortwave at the surface is then:

IG = IE{(1-a)[1-a(uq)i](1-Ac)(1-abs)[1-a(u1)b] (31)

After adding aerosol, ozone and multiple reflection effects (see the preceding section), Gautier and
Frouin [25] expressed the shortwave radiation incident at the surface in cloudy conditions, in the
following way:

G = {IE\LC1exp(-Czlcose)ﬁ-Ac-abs)(1-021)(1-023)[1-a(u1)]}/[(1-03A)(1-C4Ac)] (32)

where Oz1 and Oz3 are the ozone absorption coefficients and Cq1to C4 are the empirical constants
derived from the surface visibility already introduced in the context of equation (29}.

11.5.1.3 Clear air and cloudy atmosphere models

The formulation of two different models for clear and cloudy conditions requires a procedure to
decide when an image pixel is clear or cloudy, in order to know what model must be applied. This
is performed in the GDM model by means of a brightness threshold value determined via a
minimum technique (adding a confidence margin - whose numerical value is not given in the
original paper - to the minimum digital count), for every pixel and every hour, using images
relative to a series of days. Indeed the effect of a cloud, within the field of view of a visible
radiometer, is to increase the measured brightness. When the pixel brightness is lower than the
threshold, the pixel is declared clear and the calculations are made using the clear air model.
Otherwise the cloud model is used.

Raphael and Hay [13,14] claimed that the procedure of taking minimum brightness for several
images at the same time of day does not take into consideration variations in albedo with changing
zenith angle and season. Thus, in their application, this part of the GDM approach was replaced by
the Tarpley minimum brightness determination.

11.5.2 MDV method

The MDV method also relies on two different models: a standard atmosphere model and a real
atmosphere model. The first one is similar to the clear-sky model of the GDM method, from which
it differs only because it describes also the effects due to a standard aerosol loading in the
atmosphere. Then, deviations from this ideal case are evaluated in a simple way , by assuming the
presence of a reflecting non-absorbing layer, which simulates the effects of non-standard aerosol
loading or the presence of clouds.
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11.5.2.1 The model for a standard atmosphere

Marullo et al,, in agreement with Gautier et al. [9], Preuss and Geleyn [27] and Chen and Ohring
[28], expressed the planetary albedo for a standard atmosphere, PAg = IE1/IE) as a linear

function of the ground albedo A:
PAcs=a+bA (33}

To estimate the planetary albedo PAg for a standard atmosphere at several solar zenith angles,
Marullo et al. used a series of clear sky data. Since only one clear sky day was available to the
authors, the time averaged values of PAg were obtained from a spatial ensemble average, taken
over the whole ltalian peninsula, assuming that the surface albedo does not dramatically change
from place to place. Then, about 500 values of PAg were combined in groups having similar solar
zenith angles, and this lead to the parametrization:

PAs = a(90-0)Y + B (34)
with: o = 0957, 8 =0.111 and v = -0.66

From the definition of PAg the radiation density flux at the satellite is:

IES,T = PAS |E5’1

where |Eg ) = 888.7 (ro/r)2 cos 8 [W/m?] is the fraction of the solar irradiance at the top of
the atmosphere in the METEQSAT visible range (0.40 - 1.10pum),

In MDV's approach, equations (34) and (33) are used to evaluate the ground albedo A directly
from satellite measurements. This means that the raw data (counts) have to be converted into

radiances (W m-2 sr-1) with a known calibration function, and then inio energy fluxes (W m2)
by the usual assumption that upwelling radiances at the top of the atmosphere are isotropic
(which means that flux = = x radiance).

Assuming A is known, the solar radiation reaching the ground in standard atmospheric conditions,
IGg, is written, following Gautier ef al. (equation (28)), as a function of the atmospheric

transmissivity T(0):

1Gs = IE [T(6)[1+a1(B8)A] (35)
with IE| following equation (4) and with

T{6) = (1-a)[1-a(uq)]

In order to study the functional relationships T(8)} and o 1(9), Marullo ef al. used a radiative
transfer model developed by Schmetz [29]. They adopted a temperature profile given for a

summer mid-latitude standard atmosphere. The water vapor content was fixed at 25 kg/m2 with a
scale height of 2 km, while the aerosol content was separated in three distinct layers with
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different physical characteristics as shown in table 6. This situation is considered to occur often
over the Italian peninsula under clear sky conditions.

Table 6: Three-layer atmospheric aerosol profile {surface visibility 23 km})
in the MDV standard clear-sky model.

Aetrosol profile
0 + 2 km maritime
2 + 10 km continental
10 + 50 km stratospheric

The radiative transfer model was used to calculate T{6} and a1(6) for different values of the solar
zenith angle 6 and the results were approximated by the following empirical relationships:

T(8) = ay 871 + by

(36)
c1(9) = az 0%2 + bo
with the following values for the coefficients:
ay =0,194108 az=0,9108
by = 0,6678 bo = 0,460 (37)

v =3,29 Y2 = 4,21

Whenever the atmospheric conditions are similar to those of the standard model, the solar
radiation at the surface is estimated with equations (35) and (36).

11.5.2.2 The model for a real atmosphere

In most cases real atmospheric conditions differ from the fixed standard conditions used in the
clear-sky model, and these differences have to be taken into account for a correct evaluation of
the real solar irradiance. Marullo, Dalu and Viecla assume that any significant deviation of the flux
measured at the satellite from the flux evaluated for standard conditions must mainly depend on
variations in the atmospheric particle loading. The presence of these particles is simulated by a
non-absorbing thin reflecting layer which is assumed to be located above the absorption and
scattering mechanisms acting in the standard atmosphere (see figure 5). In fact, as we shall see,
the "reflection" of this layer can even be negative.

Denoting whith |Et ; the radiation reflected by the artificial aerosol layer, the solar irradiance at
ground becomes:

IG = (IEj - IET,r) T(8) [1 + 21(8) Al (38)
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Figure 5: Scheme of the real atmosphere model by Marullo, Dalu and Viola (1987)

where T(8) and o1(8) are still given by equations (35) and (36).
The reflecting layer leads to a variation of the radiance measured by the satellite which reads (see
figure 5):

IEt = IETr+ (IE - IEt e + A(1 + a1 A)T{0)T(0g){1 - Ag)] (39)

where T(0s) is the total transmissivity of the atmosphere at the satellite view angle, and Ag is the
albedo of the reflecting layer.

The first term in equation (39) is, by definition, the radiation reflected by the layer. The second
term is the fraction of the remaining direct beam scattered back by the atmosphere. The third
term is the solar radiation reflected by the ground and reaching the satellite after depletion by the
fraction Ag on the ground-side of the reflecting layer.

By definition, Ac = I[ET (/IE| and this value can be retrieved from equation (39) as soon as the
satellite counts are converted into the flux IE1.
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Since the METEQOSAT spectral range (0.40 - 1.10 um} does not coincide with the pyranometer's
spectral range, T(0), T(0g) and a1(6) are still given by equation (36) but with:

aj = -0,30610-6 ap = 0,410°8
b1 = 0,758 bp = 0,463 (40)
Y1 = 3,21 Y2 = 4,44

Also Ac, i.e. |IET y, is at first retrieved in the restricted spectral range. For the estimation of IG

by equation (38) to hold, a conversion to the full range is necessary. Based on the radiative
transfer code of Schmeiz [29], Marullo ef al. show that the "measured" A; ought to be multiplied

by about 0.9 to get the full range value.

The modulating effect of the thin reflecting layer is best understood while comparing the possible
measured |ET with the one valid for the standard cloudless atmosphere, IE7 5 :

a) if IET s IET, then IET ¢ = 0: the atmospheric conditions are standard;

b) if IET,s > IET, then IEt < 0: the atmosphere is extremely clean and dry;
c) if IEt s < [ET, then lET > 0: either clouds or large turbidity, or both, fill the atmosphere.

Inversely, these relations govern the selection during the estimation of 1G:

If the planetary albedo PA deduced from satellite images is within a 95% confidence interval
around the standard atmosphere value PAg given by equation (34), the difference is assumed to be
due to small variations of the surface albedo, and the procedure for the standard atmosphere is
retained. If PA is beyond the 95% confidence limit, the deviation is considered as significant, and
|G is obtained from equation (38) with [E1 ; from equation (39).

11.5.3 MR model

The method developed by Mdser and Raschke [30] was part of the Project F of the European
Community Solar Energy Research and Development Programme. This method, applied to
METEOSAT images, is based on more realistic and, thus, more complex radiative transfer
calculations than the other physically based methods. For instance it needs the inclusion of more
parameters to describe the state of the atmosphere.

Furthermore the MR method - at least in its original formulation - also requires the use of the
thermal infrared data, necessary to estimate the cloud top height, which is an input variable of
the radiative transfer model. Fortunately, the MR method does not require the calibration of the
satellite data.

11.5.3.1 Radiative {transfer model utilisation

Méser and Raschke used the radiative transfer model developed by Kerschgens et al. [31], based
on a two-stream approximation. The main variables used in this model are the selar zenith angle
8, the cloud top height h¢, the optical depth of clouds 1 and the ground albedo A. Additional
information required by the model includes the boundary layer structure (containing the aerosol
effects), the climatological profiles of temperature, pressure, humidity and ozone and the droplet
size distribution in the clouds.
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Calculations performed with this model showed that solar irradiance at ground depends to a much
lesser extent on the absorption by aerosols, water vapor and ozone than on cloud cover. So Mdser
and Raschke expressed the solar irradiance at ground in the following way:

IG = 1Ggo x 1Gp + (1 - IGaHGe (41)
where:

|Gy = solar irradiance at ground in clear-sky conditions, when the irradiance reaches its

maximum value;
IG; = solar irradiance at ground in overcast conditions, when the irradiance reaches its minimum

value 1Gmin;
IGn is the normalized irradiance at ground defined by the following equation:

IGn = (IG - 1Gmin)/(IGo - 1Gmin) (42)

Note that 1Gn can assume all the values between 1, in clear-sky conditions, and 0, in overcast
conditions. Therefore, it is also called "fractional cloud cover".

As already previously stated, 1Gn is mainly a function of the solar zenith angle and of the optical
depth of clouds, viz.

IGn = IGn(e,Tc)

By analogy, it is possible to write the flux density of the solar radiation emerging from the
atmosphere in the following way:

|IET = IET, max X IET,n + (1 - IET n)ET min (43)
where:

IET max is the flux density of solar radiation emerging from the atmosphere in overcast

conditions, when it reaches its maximum;
E1T min is the flux density of solar radiation emerging from the atmosphere in clear-sky

conditions, when it reaches its minimum;
IET n is the normalized flux density of solar radiation emerging from the atmosphere.

Obviously, IET  is defined by the following equation:
IET,n = (IET - IET, min/(IET,max - IET,min} (44)

Note again that IET p is equal to 0 in clear-sky conditions and to 1 in overcast conditions. It is
therefore evident that the normalized irradiance G, the normalized flux density IEt , and the
cloud optical depth ¢ are correlated. In particular, when t¢ increases then IET n also increases,
while IG, decreases and vice-versa when 1. decreases. For these reasons Méser and Raschke
described G by means of IEt  instead of 1¢:

IGn(e. Tc) = IGn(e,IET'n)

The main advantage of this formulation is that the value of IEt b can be estimated with the visible
satellite data as will be described below.

Another practical approximation introduced by M&ser and Raschke is to assume that the solar
irradiance at ground in overcast conditions is equal to zero, that is:
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|Gmin =0 (45)

With this assumption equation {41} may be written as:

IG = 1Go X 1Gn(8,IET n) (46)

Here 1Gp is completely determined by the radiative transfer model that determines also the
expression of G as a function of IET n.

5.3.2 Utilization of satellite data

The goal of Mdser and Raschke was to correlate IET,, to the visible data provided by the satellite,

while the thermal infrared data were used to estimate the cloud top height as we already noted. The
visible data are used to estimate a normalized radiance L defined by:

Ln = (cB - cBmin)/{¢Bmax - ¢Bmin) (47)

where:
¢ is the calibration factor (which must not be explicitly known};

B is the current digital counts provided by the satellite; .
Bmin and Bmax are respectively the minimum (corresponding to clear-sky conditions} and the

maximum {corresponding to overcast conditions) digital counts. These limits are determined by
sequences of images covering 15-30 days in a way very similar to the C method.

Assuming isotropy of the radiation emerging from the atmosphere and multiplying equation (47}
with %, one obtains:

Ln = (tB-xtBmin}/(nBmax - ®Bmin) = IET,n (48)

The solar irradiance at ground is so determined by substituting into equation {46) the value of
IET n determined by satellite data.

11.5.4 DDK method

The main feature of the method developed by Dedieu, Deschamps and Kerr [11] is the possibility
of describing the solar irradiance at ground by means of a unigue expression valid both for clear
and cloudy conditions. The formulation was obtained by considering, initially, a model for clear-
sky conditions and a model in which only the effect of clouds on solar radiation is considered, and
by assuming that the attenuation of solar radiation due to the atmospheric components, except
clouds, is the same both in clear and cloudy conditions.

711.5.4.1  Clear-sky model

The solar irradiance at the earth's surface in clear-sky conditions, 1Gg, is modelled as follows:

1Go = IETo(6) (49)
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where Tgy(8) is the clear-sky transmission factor, accounting for gaseous absorption and for
Rayieigh and Mie scattering.

Dedieu et al. computed To(0) using the formulae of Lacis and Hansen [32] for atmospheric
components together with the Tanre et al. [26] radiative transfer model for aerosol effects. The
standard midlatitude mean. values were used. Thus, water vapor content varies from 1.0 g cm*2
in spring to 2.5 g cm™2 in summer, while ozone content is assumed constant and equal to 0.35 atm
cm; aerosol optical depth has been set to 0.132 at a wavelength of 1 pm.

11.5.4.2 Cloudy model

Then, Dedieu et al. consider a cloudy scattering atmosphere with no absorption and molecular
scattering, assuming isotropy of the radiance reflected by the cloud layer and the surface.
Additionally, the authors consider multiple reflections occurring between the clouds base and the
ground (see figure 6). Under these conditions the planetary albedo PA=IE1/IE| becomes:

PA = Ac + [(1-Ac)2Al/(1-AcA) (50)

where A¢ and A are the cloud and surface albedo, respectively, while the shortwave irradiance is
then given by:

1Ge = IE)(1 - PAY(1 - A) (51)

Note that equations (50) and (51) are extended over the whole solar spectrum assuming that
there are no spectral changes in the scattering/reflecting properties of the clouds and of the
surface.

Equation (51) clearly demonstrates that the effects of cloud variability on IG¢ can be simply
derived from the continuous monitoring of the planetary albedo PA as recorded by the satellites.
Nevertheless, the surface albedo A must be known. It was determined by the authors (in a
standard way) as the minimum of the planetary albedo observed by the satellite in a time series of
images, long enough to have a good probability of cloud-free conditions.

Obviously, equation (51) must be handled with care over highly reflective surfaces, such as snow
covered areas, where A may be close to 1. This is a consequence of the fact that clouds are difficult
to distinguish from snow in the visible images.

11.5.4.3 Solar irradiance estimate

Assuming that molecular transmission under c¢loudy conditions is about the same as under clear
skies, both processes, i.e., cloud effects in equation {51) and atmospheric transmission in
equation (49), are combined by Dedieu ef al. in a simplified way to derive the final equation to be
used:

IG = IE|T(6)(1 - PA)(1 - A) (52)

where T(0) is set equal to To(6) in practice. This assumption is justified as follows:

- most of the ozone absorption occurs above the clouds;
- saturation of water vapor bands makes water vapor absorption only weakly sensitive to the
increase of water vapor in the presence of clouds (Davies et al. [33]).
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Figure 6: Scheme of the cloudy atmosphere model by Dedieu, Deschamps and Kerr (1987)

The albedos PA and A are defined by DDK as window albedos (i.e. albedoes observable in an
atmospheric window} with no gaseous absorption, while the actual albedos are smaller because of

molecular absorption.

Note that a significant aerosol effect is implicitly included in equation (52). Indeed the main
aerosol effect is to increase solar radiation backscattering towards the satellite and, as a
consequence, the planetary albedo PA. Therefore a strong concentration of aerosol is treated - by
this model - as a cloud.

The clear sky transmission factor Ty(9) is estimated knowing the values of the climatological
parameters used in the radiative transfer model, while PA and A are determined from satellite
data. PA is computed, after calibration, as the ratio between the solar radiation received by the
satellite and the extraterrestrial radiation. A is determined by a minimum technique similar to
that used by Gautier et al. [9].

11.6 Comparison between models

All the models were tested by their authors and by other scientists with experimental data . Few
studies made a comparison of different models using a single homogeneous data set. A detailed
assesment of three models (HH, T and GDM, in our notation) has been performed by Raphael [13]
and Raphael and Hay [14].
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The ground radiation data for these studies comes from a 12-station pyranomeiric network
spanning a 45 x 70 km section of British Columbia, Canada. Twenty-one days were selected to
include variable cloud cover conditions in all seasons. Only the visible data, in the 0.55 - 0.75um
region measured by GOES-2 satellite were used: these were in the form of counts on an 8-bit
scale ranging from zero to 255 counts, with a resolution of four counts. The resolution of the
satellite was of the order of 1.4 km x 1.4 km, but the accuracy of the earth location of the
satellite imagery (the accurate alignement of points on the image to the same points on the earth's
surface) was within £2 pixels.

Czeplak, Noia and Ratto [34] compared the T and the MR models. Ground radiation data for this
study comes from the 29-station pyranometric German network and sncompasses daily totals for
November 1986.

11.6.1 HH model

The HH model [5] was originally developed and tested using data from the tropical Atlantic: the
estimates were within £22% of the measured radiation, on an hourly basis, improving to 8% on
a daily basis.

Raphael and Hay [13,14] pointed out the inability of the regression coefficients developed for the
tropical Atlantic to describe the conditions at midlatitude locations, mainly under the partly
cloudy and overcast conditions, due to the generally different cloud regimes. The HH model with
coefficients revised by Raphael underestimated the measured radiation on the partly cloudy days
but was without significant bias for the clear and the overcast days.

71.6.2 T model

Estimates of daily totals with the T model were reported within 10% of the mean measured
radiation. In the application done by Raphael and Hay [13,14], this model was shown to
systematically underestimate the measured radiation for the parily cloudy and clear days. On the
other hand, overestimation under overcast conditions is atiributed to the inadequate handling of
cloud absorption. Increases in the rms error from clear through overcast conditions were pointed
out.

After Raphael and Hay's revision (regression coefficients entering in equations (15)) the bias
for clear sky conditions was reduced to zero, with a concomitant decrease in the rms error to a
value near +5%. This result is - in this experiment - better than those obtained with the HH and
GDM models.

Little improvement was attained for partly cloudy and overcast conditions. The value selected as a
threshold for separating partly cloudy from overcast conditions is considered as very critical.

11.6.3 JPT model

In their paper [7], the authors report that their estimates are within £16.2% of the average
measured radiation on an hourly basis (7200 hourly totals from the eastern and central U.S.A.
for August to December 1980} and within £8.5% on a daily basis (about 1000 daily totals).

11.6.4 C model

The results obtained by Cano et al. [8] were affected by a r.m.s error of about 83 Wm-2 for global
hourly values within sequences of about 7 days in May 1979 (29 French sites} and April 1982
(80 European sites). No average measured value is reported so that this rmse cannot be
expressed in percent.
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11.6.5 GDM maodel

In the original application of their model (184 site-days), Gautier et al. [9] found that clear day
estimates were within 5% of the mean measured radiation, while the estimates for cloudy and
completely overcast days were within 14% and 15% of the mean measured radiation,
respectively. For all days, combined estimates were within 8% of the mean measured radiation.

In their application, Raphael and Hay [13,14] found that on the average this model overestimated
the measured radiation under clear skies, and underestimated it under partly cloudy conditions.
The model also overestimated measured radiation under overcast condifions, except in summer.
The discrepancy for partly cloudy conditions is attributed {(as for T model) to the problem in
defining the correct cloud threshold. The overestimation in overcast conditions is again attributed
to the inadequate handling of cloud absorption.

On the other hand the GDM model, applied by Raphael and Hay to a sequence of nine days
demonstrated its superior performance with respect o models HH and T in simulating hourly
radiation under partly cloudy and overcast conditions.

11.6.6 MDV model

Performance assessment of this method [12] was evaluated with measured daily totals for 2 days
at 14 ltalian sites. Estimates with the model resulted in a rmse of 8.5% of the measured average

(10.4 MJm-2day-1) for a wide variety of sky conditions (14% clear sky, 43% partially cloudy,
43% overcast).

11.6.7 DDK model

The authors [11] obtained estimates within an error of £19.5% of the measured average on an
hourly basis. This error decreased by averaging the results over a period of one month. In this

case the standard error was within £6.7%, corresponding to about £109 Wm-2, The absolute
errors were minimum for clear sky conditions (x50 W m-2) and maximum for overcast sky
(x150 Wm2) with an intermediate value (x100 Wm-2) for partly cloudy skies.

11.6.8 MR model

The results obtained by Mdser and Raschke [30] for hourly totals in June 1979 were affected by
a standard error of about 72 Wm 2 (19% of the measured average) considering all sky

conditions, decreasing to 60 Wm™2 (16%) for overcast conditions while reaching 82 Wm-2
{22%) for broken cloudiness. Daily totals for 81 European sites in April 1982 were reproduced

with an rmse of 11.7% of the measured average of 16.48 MJm-2 .
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Nomenclature

A surface albedo of earth

Ac cloud albedo

abs cloud absorption

a(uq)t and a{up)t absorption coefficients of short wave radiation above clouds

a(uq)p and afuz)p absorption coefficients of short wave radiation below clouds

B brightness, i.e. digital counts measured by the satellite, proportional to the upwelling solar
radiation (emerging from the atmosphere)

Bm mean target brightness, i.e. mean brightness of a pixel array [T and JPT]

Bmax maximum brightness, giving information about the cloud albedo [T]

Bmax threshold brightness [JPT]

Bmin threshold brightness [JPT]

Bn normalized clear sky brightness, i.e. By (0 = 45°, 85 = 105°) [T]

By clear sky brightness {minimum brightness}

By, observed clear sky brightness [JPT]

Ea solar radiation flux absorbed by the atmosphere

Eg solar radiation flux absorbed by the ground

Fes solar constant

Fo hourly value for the solar constant [JPT]

HG hourly solar radiation incident on the earth's surface

HG| hourly solar radiation incident on the top of the atmosphere [C]

|Eg, 1 flux density of the upwelling solar radiation emerging from atmosphere and received by the
satellite in a standard atmosphere [MDV]

IEs,| flux density of the fraction of the solar radiation incident on the fop of the atmosphere in the
visible range (0.40 - 1.10um) [MDV]

IET flux density of the solar radiation emerging from atmosphere and received by the satellite

[ET,max flux density of solar radiation emerging from the atmosphere in overcast conditions
[MR]

IE1T, min flux density of solar radiation emerging from the atmosphere in clear-sky conditions
[MR]

IEt,n normalized flux density of solar radiation emerging from the atmosphere (dimensionless,
0 < IEt,p < 1) [MR]

|Et r bacscattered radiation by the aerosol layer [MDV]

IE| flux density of the solar radiation incident on the atmosphere (Wm-2)

IG flux density of the solar radiation incident on the earth's surface (Wm-2)

IG¢ flux density of the solar radiation incident on the earth's surface in overcast atmospheric

conditions [C, MR and DDK]
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|G, normalized flux density of the solar radiation incident on the earth's surface (dimensionless,
0 < 1Gh < 1) [MR]

IGg flux density of the solar radiation incident on the earth's surface in standard atmospheric
conditions [MDV]

|G, flux density of the solar radiation incident on the earth's surface in clear atmospheric
conditions [C and MR]

m optical air mass

n cloud cover index (0 < n < 1)

PA planetary albedo, i.e., [E1/IE}

PAs planetary albedo in standard atmospheric conditions, i.e., IEg 1/IEs,| [MDV]

r actual sun-earth distance

ro mean sun-earth distance

Rt radiance measured by the satellite in the thermal infrared spectral band at time t [C]

R radiance of the cloud tops measured by the satellite in the thermal infrared spectral band [C]

Rg radiance of surfaces covered by snow or ice, measured by the satellite in the thermal infrared
spectral band [C]

SR visible radiance, another name for the planetary albedo [HH]

T, atmospheric transmittance for downwelling solar radiation for overcast sky conditions [C]

T, visible transmission due to Rayleigh scattering [T]

Tt atmospheric transmittance for downwelling solar radiation at time t [C]

Twa visible transmission after water vapor absorption [T]

Tws Vvisible transmission due to water vapor scattering [T]

T{8s) transmittance for upwelling solar radiation, i. e., |IE1/(AxIG) [MDV, GDM]

T(8) atmospheric transmittance for downwelling solar radiation, i. e., IG/IE; [MDV,GDM]

To atmospheric transmittance for downwelling solar radiation for clear-sky conditions [C]

T1 clear sky/partly cloudy sky threshold [T]

To partly cloudy sky/cloudy sky threshold [T]

uq slant water vapor paths for solar zenith angle [GDM]

uo slant water vapor paths for satellite zenith angle [GDM]

o atmospheric scattering coefficient for beam radiation [GDM]

a1 atmospheric scattering coefficient for diffuse radiation [GDM]

¢ azimuth angle between sun and satellite

0 solar zenith angle

8g satellite zenith angle

p! reference albedo, i.e., IET/IGo at time t [C]

pe average reference albedo of the cloud tops [C]

po reference albedo for clear sky conditions [C]
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