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+ components available
+ cost efficient
+ simple control

- poor direct cooling efficiency
- high thermal inertia during initial cooling
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Evaporators Data

tube and fin finned tube

tube length 2 x 6.2 m 
in series

4 x 4.95 m 
in parallel

tube outside surface 0,39 m² 0,51 m²
fin water side area 2,32 m² 0,91 m²
total water side area 2,71 m² 1,42 m²
tube material copper aluminum
fin material aluminum aluminum
mean fin length 9,8 mm 11,1 mm
refrigerant volume 5,8 l 5,0 l
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Storage Charging
Cooling Capacity vs. Ice Fraction
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Storage Charging
Evaporation Temperature vs. Ice Fraction

Ice storage integration into a mono split unit - IEA Task 53 Meeting Dresden 6

-30

-25

-20

-15

-10

-5

0

0% 10% 20% 30% 40% 50% 60% 70% 80%

ev
ap

or
at

io
n 

te
m

pe
ra

tu
re

  [
°C

]

ice fraction [%]

tube and fin, plf = 25% tube and fin, plf = 75%
finned tube, plf = 20% finned tube, plf = 75%

tAmb = 20 °C

tAmb = 25 °C

tAmb = 20 °C

tAmb = 25 °C



Charge time and EER vs. Outdoor Unit PLF
for charging process 15 °C to 50 % ice fraction
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Efficiency in Direct Cooling Mode
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possible

efficient

simple control
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Possible Operations Modes Depending on Cooling 
Demand and Remaining PV Power
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Possible Operations Modes – Option 1
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Integrating an Ice Storage 
Evolution Stage

Ice storage integration into a mono split unit - IEA Task 53 Meeting Dresden 12

direct cooling process
+ high efficient
+ fast response

+ we increase flexibility by a number of possible 
parallel operations

- complex control required
- expensive indoor unit and installation



Possible Operations Modes – Option 2
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Integrating an Ice Storage 
Alternative
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+ standard indoor unit
+ no water cycle
+ high efficiency

- refrigerant pump availability
- complex control (refrigerant location)
- discharge process might be less efficient



Possible Operations Modes – Option 3
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Refrigeration Pumps Tests

no pumps for liquid refrigerants are available in the required range

compared to application of available pumps conditions differ in…

viscosity of refrigerants is lower than of other media (diesel, gasoline)

pressure increase is low

absolute pressure level is high (up to 40 bar and higher)

refrigerant state is near to saturation (pressure decrease leads to vaporization)

cooperation with a German pump manufacture

first promising results in a test cycle

right now installed in the test rig
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Test Rig Extension
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Controller Development using Modelling / Simulation
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Controller Development using Modelling / Simulation
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Controller Implementation

Controller implementation in Arduino / Pi – based controllers

both variants (PID based and fuzzy based)

forcast for pv-production and cooling demand based on web-queries and simple 
calculation models

Controller test on test rig

hardware controller

using real forcast data

using current pv-electricity 
generation from 
ILK-pv-system

using current weather data 
and building model to 
generate heat load
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Simulation Results using Models based on the Test Rig 
Results
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• with storage:
• grid consumption is 
decreased by 60 %
• pv consumption is 
increased by 280%
• eer decrease due to 
charging during high 
ambient temperatures


